首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We have previously shown for the paramyxovirus simian virus 5 (SV5) that a functional promoter for RNA replication requires proper spacing between two discontinuous elements: a 19-base segment at the 3' terminus (conserved region I [CRI]) and an 18-base internal region (CRII) that is contained within the coding region of the L protein gene. In the work described here, we have used a reverse-genetics system to determine if the 53-base segment between CRI and CRII contains additional sequence-specific signals required for optimal replication or if this segment functions solely as a sequence-independent spacer region. A series of copyback defective interfering minigenome analogs were constructed to contain substitutions of nonviral sequences in place of bases 21 to 72 of the antigenomic promoter, and the relative level of RNA replication was measured by Northern blot analysis. The results from our mutational analysis indicate that in addition to CRI and CRII, optimal replication from the SV5 antigenomic promoter requires a third sequence-dependent element located 51 to 66 bases from the 3' end of the RNA. Minigenome RNA replication was not affected by changes in the either the position of this element in relation to CRI and CRII or the predicted hexamer phase of NP encapsidation. Thus, optimal RNA replication from the SV5 antigenomic promoter requires three sequence-dependent elements, CRI, CRII and bases 51 to 66.  相似文献   

2.
A functional RNA replication promoter for the paramyxovirus simian virus 5 (SV5) requires two essential and discontinuous elements: 19 bases at the 3′ terminus (conserved region I) and an 18-base internal region (conserved region II [CRII]) that is contained within the coding region of the L protein gene. A reverse-genetics system was used to determine the sequence requirements for the internal CRII element to function in RNA replication. A series of copyback defective interfering (DI) RNA analogs were constructed to contain point mutations in the 18 nucleotides composing CRII, and their relative replication levels were analyzed. The results indicated that SV5 DI RNA replication was reduced by substitutions for two CG dinucleotides, which in the nucleocapsid template are in the first two positions of the first two hexamers of CRII nucleotides. Substitutions for other bases within CRII did not reduce RNA synthesis. Thus, two consecutive 5′-CGNNNN-3′ hexamers form an important sequence in the SV5 CRII promoter element. The position of the CG dinucleotide within the SV5 leader and antitrailer promoters was highly conserved among other members of the Rubulavirus genus, but this motif differed significantly in both sequence and position from that previously identified for Sendai virus. The possible roles of the CRII internal promoter element in paramyxovirus RNA replication are discussed.  相似文献   

3.
The cis-acting genomic RNA requirements for the assembly of vesicular stomatitis virus (VSV) ribonucleocapsids into infectious particles were investigated. Using a biological assay based on particle infectivity, we demonstrated that subgenomic replicons that contained all four possible combinations of the natural genomic termini, the 3′ leader (Le) and 5′ trailer (Tr) regions, were replication competent; however, a 3′ copyback replicon (3′CB), containing the natural 3′ terminus but having the 5′ Tr replaced by a sequence complementary to the 3′ Le for 46 nucleotides, was unable to assemble infectious particles, despite efficient replication. When a copy of Tr was inserted 51 nucleotides from the 5′ end of 3′CB, infectious particles were produced. However, analysis of the replication products of these particles showed that the 51 nucleotides which corresponded to the Le complement sequences at the 5′ terminus were removed during RNA replication, thus restoring the wild-type 5′ Tr to the exact 5′ terminus. These data showed that a cis-acting signal was necessary for assembly of VSV RNAs into infectious particles and that this signal was supplied by Tr when located at the 5′ end. The regions within Tr required for assembly were analyzed by a series of deletions and exchanges for Le complement sequences, which demonstrated that the 5′ terminal 29 nucleotides of Tr allowed assembly of infectious particles but that the 5′ terminal 22 nucleotides functioned poorly. Deletions in Tr also altered the balance between negative- and positive-strand genomic RNA and affected levels of replication. RNAs that retained fewer than 45 but at least 22 nucleotides of the 5′ terminus could replicate but were impaired in RNA replication, and RNAs that retained only 14 nucleotides of the 5′ terminus were severely reduced in ability to replicate. These data define the VSV Tr as a position-dependent, cis-acting element for the assembly of RNAs into infectious particles, and they delineate RNA sequences that are essential for negative-strand RNA synthesis. These observations are consistent with, and offer an explanation for, the absence of 3′ copyback defective interfering particles in nature.  相似文献   

4.
5.
6.
The 3′X domain of hepatitis C virus is a strongly conserved structure located at the 3′ terminus of the viral genomic RNA. This domain modulates the replication and translation processes of the virus in conjunction with an upstream 5BSL3.2 stem–loop, and contains a palindromic sequence that facilitates RNA dimerization. Based on nuclear magnetic resonance spectroscopy and gel electrophoresis, we report here that domain 3′X adopts a structure composed of two stem–loops, and not three hairpins or a mixture of folds, as previously proposed. This structure exposes unpaired terminal nucleotides after a double-helical stem and palindromic bases in an apical loop, favoring genomic RNA replication and self-association. At higher ionic strength the domain forms homodimers comprising an intermolecular duplex of 110 nucleotides. The 3′X sequences can alternatively form heterodimers with 5BSL3.2. This contact, reported to favor translation, likely involves local melting of one of the 3′X stem–loops.  相似文献   

7.
Influenza viruses have a segmented viral RNA (vRNA) genome, which is replicated by the viral RNA-dependent RNA polymerase (RNAP). Replication initiates on the vRNA 3′ terminus, producing a complementary RNA (cRNA) intermediate, which serves as a template for the synthesis of new vRNA. RNAP structures show the 3′ terminus of the vRNA template in a pre-initiation state, bound on the surface of the RNAP rather than in the active site; no information is available on 3′ cRNA binding. Here, we have used single-molecule Förster resonance energy transfer (smFRET) to probe the viral RNA conformations that occur during RNAP binding and initial replication. We show that even in the absence of nucleotides, the RNAP-bound 3′ termini of both vRNA and cRNA exist in two conformations, corresponding to the pre-initiation state and an initiation conformation in which the 3′ terminus of the viral RNA is in the RNAP active site. Nucleotide addition stabilises the 3′ vRNA in the active site and results in unwinding of the duplexed region of the promoter. Our data provide insights into the dynamic motions of RNA that occur during initial influenza replication and has implications for our understanding of the replication mechanisms of similar pathogenic viruses.  相似文献   

8.
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.  相似文献   

9.
R Levis  B G Weiss  M Tsiang  H Huang  S Schlesinger 《Cell》1986,44(1):137-145
Defective-interfering (DI) genomes of a virus contain sequence information essential for their replication and packaging. They need not contain any coding information and therefore are a valuable tool for identifying cis-acting, regulatory sequences in a viral genome. To identify these sequences in a DI genome of Sindbis virus, we cloned a cDNA copy of a complete DI genome directly downstream of the promoter for the SP6 bacteriophage DNA dependent RNA polymerase. The cDNA was transcribed into RNA, which was transfected into chicken embryo fibroblasts in the presence of helper Sindbis virus. After one to two passages the DI RNA became the major viral RNA species in infected cells. Data from a series of deletions covering the entire DI genome show that only sequences in the 162 nucleotide region at the 5' terminus and in the 19 nucleotide region at the 3' terminus are specifically required for replication and packaging of these genomes.  相似文献   

10.
11.
12.
We have analyzed Semliki Forest virus defective interfering RNA molecules, generated by serial undiluted passaging of the virus in baby hamster kidney cells. The 42 S RNA genome (about 13 kb 2) has been greatly deleted to generate the DI RNAs, which are heterogeneous both in size (about 2 kb) and sequence content. The DI RNAs offer a system for exploring binding sites for RNA polymerase and encapsidation signals, which must have been conserved in them since they are replicated and packaged. In order to study the structural organization of DI RNAs, and to analyze which regions from the genome have been conserved, we have determined the nucleotide sequences of (1) a 2.3 kb long DI RNA molecule, DI309, (2) 3′-terminal sequences (each about 0.3 kb) of two other DI RNAs, and (3) the nucleotide sequence of 0.4 kb at the extreme 5′ end of the 42 S RNA genome.The DI309 molecule consists of a duplicated region with flanking unique terminal sequences. A 273-nucleotide sequence is present in four copies per molecule. The extreme 5′-terminal nucleotide sequence of the 42 S RNA genome is shown to contain domains that are conserved in the two DI RNAs of known structure: DI309, and the previously sequenced DI301 (Lehtovaara et al., 1981). Here we report which terminal genome sequences are conserved in the DI RNAs, and how they have been modified, rearranged or amplified.  相似文献   

13.
The RNA elements that are required for replication of defective interfering (DI) RNA of the JHM strain of mouse hepatitis virus (MHV) consist of three discontinuous genomic regions: about 0.46 to 0.47 kb from both terminal sequences and an internal 58-nucleotide (nt)-long sequence (58-nt region) present at about 0.9 kb from the 5′ end of the DI genome. The internal region is important for positive-strand DI RNA synthesis (Y. N. Kim and S. Makino, J. Virol. 69:4963–4971, 1995). We further characterized the 58-nt region in the present study and obtained the following results. (i) The positive-strand RNA structure in solution was comparable with that predicted by computer modeling. (ii) Positive-strand RNA secondary structure, but not negative-strand RNA structure, was important for the biological function of the region. (iii) The biological function had a sequence-specific requirement. We discuss possible mechanisms by which the internal cis-acting signal drives MHV positive-strand DI RNA synthesis.  相似文献   

14.
RNA isolated from southern bean mosaic virions contains, in small amount, a subgenomic RNA (molecular weight, 0.38 × 106) that serves in vitro as an mRNA for southern bean mosaic virus coat protein. The RNA has a 5′-linked protein indistinguishable from the protein linked to the 5′ end of full-length genomic RNA. Its base sequence, determined to 91 bases from the 3′ end, is identical to the 3′-terminal sequence of the genomic RNA. The results suggest that the coat protein messenger sequence exists as a “silent” cistron near the 3′ end of the genomic RNA.  相似文献   

15.
Alphaviruses are mosquito-transmitted RNA viruses that cause important diseases in both humans and livestock. Sindbis virus (SIN), the type species of the alphavirus genus, carries a 11.7-kb positive-sense RNA genome which is capped at its 5′ end and polyadenylated at its 3′ end. The 3′ nontranslated region (3′NTR) of the SIN genome carries many AU-rich motifs, including a 19-nucleotide (nt) conserved element (3′CSE) and a poly(A) tail. This 3′CSE and the adjoining poly(A) tail are believed to regulate the synthesis of negative-sense RNA and genome replication in vivo. We have recently demonstrated that the SIN genome lacking the poly(A) tail was infectious and that de novo polyadenylation could occur in vivo (K. R. Hill, M. Hajjou, J. Hu, and R. Raju, J. Virol. 71:2693–2704, 1997). Here, we demonstrate that the 3′-terminal 29-nt region of the SIN genome carries a signal for possible cytoplasmic polyadenylation. To further investigate the polyadenylation signals within the 3′NTR, we generated a battery of mutant genomes with mutations in the 3′NTR and tested their ability to generate infectious virus and undergo 3′ polyadenylation in vivo. Engineered SIN genomes with terminal deletions within the 19-nt 3′CSE were infectious and regained their poly(A) tail. Also, a SIN genome carrying the poly(A) tail but lacking a part or the entire 19-nt 3′CSE was also infectious. Sequence analysis of viruses generated from these engineered SIN genomes demonstrated the addition of a variety of AU-rich sequence motifs just adjacent to the poly(A) tail. The addition of AU-rich motifs to the mutant SIN genomes appears to require the presence of a significant portion of the 3′NTR. These results indicate the ability of alphavirus RNAs to undergo 3′ repair and the existence of a pathway for the addition of AU-rich sequences and a poly(A) tail to their 3′ end in the infected host cell. Most importantly, these results indicate the ability of alphavirus replication machinery to use a multitude of AU-rich RNA sequences abutted by a poly(A) motif as promoters for negative-sense RNA synthesis and genome replication in vivo. The possible roles of cytoplasmic polyadenylation machinery, terminal transferase-like enzymes, and the viral polymerase in the terminal repair processes are discussed.  相似文献   

16.
The 3' termini of the genomic and antigenomic RNAs of human respiratory syncytial virus (RSV) are identical at 10 of the first 11 nucleotide positions and 21 of the first 26 positions. These conserved 3'-terminal sequences are thought to contain the genomic and antigenomic promoters. Furthermore, the complement of each conserved sequence (i.e., the 5' end of the RNA it encodes) might contain an encapsidation signal. Using an RSV minigenome system, we individually mutated each of the last seven nucleotides in the 5' trailer region of the genome. We analyzed effects of these mutations on encapsidation of the T7 polymerase-transcribed negative-sense genome, its ability to function as a template for RSV-driven synthesis of positive-sense antigenome and mRNA, and the ability of this antigenome to be encapsidated and to function as template for the synthesis of more genome. As a technical complication, mutations in the last five nucleotides of the trailer region were found to affect the efficiency of the adjoining T7 promoter over more than a 10-fold range, even though three nonviral G residues had been included between the core promoter and the trailer to maximize the efficiency of promoter activity. This was controlled in all experiments by monitoring the levels of total and encapsidated genome. The efficiency of encapsidation of the T7 polymerase-transcribed genome was not affected by any of the trailer mutations. Furthermore, neither the efficiency of positive-sense RNA synthesis from the genome nor the efficiency of encapsidation of the encoded antigenome was affected by the mutations. However, nucleotide substitution at positions 2, 3, 6, or 7 relative to the 5' end of the trailer blocked the production of progeny genome, whereas substitution at positions 1 and 5 allowed a low level of genome production and substitutions at position 4 were tolerated. Position 4 is the only one of the seven positions examined that is not conserved between the 3' ends of genomic and antigenomic RNA. The mutations that blocked the synthesis of progeny genome thus limited RNA replication to one step, namely, the synthesis and encapsidation of antigenome. Restoration of terminal complementarity for one of the trailer mutants by making a compensatory mutation in the leader region did not restore synthesis of genomic RNA, confirming that its loss was not due to reduced terminal complementarity. Interestingly, this leader mutation appeared to prevent antigenome synthesis with only a slight effect on mRNA synthesis, apparently providing a dissociation between these two synthetic activities. Genomes in which the terminal 24 or 325 nucleotides of the trailer have been deleted were competent for encapsidation and the synthesis of mRNA and antigenomic RNA, further confirming that terminal complementarity was not required for these functions.  相似文献   

17.
The 3′-terminal regions (20 to 32 residues) of the genome double-stranded RNA (dsRNA) segments of cytoplasmic polyhedrosis virus were sequenced. The dsRNAs, which were labeled at their 3′ termini by incubation with [5′-32P]pCp and T4 RNA ligase, were denatured and resolved into the plus and minus strands by agarose-urea gel electrophoresis. Ten single-stranded RNAs thus obtained from the five dsRNA segments IV, V, VIII, IX, and X were sequenced by postlabeling methods. Common 3′-terminal sequences, -GUUAGCC and -UUACU, were found in the plus and minus strands, respectively, of all five dsRNA segments. However, adjacent sequences diverged and were considerably variable. The homologous sequences found in the 3′ end may be important recognition signals for viral RNA polymerases and for assembly of the genome segments.  相似文献   

18.
The flavivirus genome is a positive-stranded ~11-kb RNA including 5′ and 3′ noncoding regions (NCR) of approximately 100 and 400 to 600 nucleotides (nt), respectively. The 3′ NCR contains adjacent, thermodynamically stable, conserved short and long stem-and-loop structures (the 3′-SL), formed by the 3′-terminal ~100 nt. The nucleotide sequences within the 3′-SL are not well conserved among species. We examined the requirement for the 3′-SL in the context of dengue virus type 2 (DEN2) replication by mutagenesis of an infectious cDNA copy of a DEN2 genome. Genomic full-length RNA was transcribed in vitro and used to transfect monkey kidney cells. A substitution mutation, in which the 3′-terminal 93 nt constituting the wild-type (wt) DEN2 3′-SL sequence were replaced by the 96-nt sequence of the West Nile virus (WN) 3′-SL, was sublethal for virus replication. An analysis of the growth phenotypes of additional mutant viruses derived from RNAs containing DEN2-WN chimeric 3′-SL structures suggested that the wt DEN2 nucleotide sequence forming the bottom half of the long stem and loop in the 3′-SL was required for viability. One 7-bp substitution mutation in this domain resulted in a mutant virus that grew well in monkey kidney cells but was severely restricted in cultured mosquito cells. In contrast, transpositions of and/or substitutions in the wt DEN2 nucleotide sequence in the top half of the long stem and in the short stem and loop were relatively well tolerated, provided the stem-loop secondary structure was conserved.  相似文献   

19.
The 3′-terminal 350 nucleotides of the tobacco etch potyvirus (TEV) genome span the end of the capsid protein (CP)-coding sequence and the 3′ nontranslated region (NTR). The CP-coding sequence within this region contains a 105-nucleotide cis-active element required for genome replication (S. Mahajan, V. V. Dolja, and J. C. Carrington, J. Virol. 70:4370–4379, 1996). To investigate the sequence and secondary structure requirements within the CP cis-active region and the 3′ NTR, a systematic linker-scanning mutagenesis analysis was done. Forty-six mutations, each with two to six nucleotide substitutions, were introduced at consecutive hexanucleotide positions in the genome of a recombinant TEV strain expressing a reporter protein (β-glucuronidase). Genome amplification activity of each mutant in the protoplast cell culture system was measured. Mutations that severely debilitated genome amplification were identified throughout the CP-coding cis-active sequence and at several distinct locations within the 3′ NTR. However, based on a computer model of RNA folding, mutations that had the most severe effects mapped to regions that were predicted to form base-paired secondary structures. Linker-scanning mutations predicted to affect either strand of a base-paired structure within the CP-coding cis-active sequence, a base-paired structure between two segments of the CP-coding cis-active sequence and a contiguous 14-nucleotide segment of the 3′ NTR, and a base-paired structure near the 3′ terminus of the 3′ NTR inactivated genome amplification. Compensatory mutations that restored base pair interactions in each of these regions restored amplification activity, although to differing levels depending on the structure restored. These data reveal that the 3′ terminus of the TEV genome consists of a series of functionally discrete sequences and secondary structures and that the CP-coding sequence and 3′ NTR are coadapted for genome amplification function through a requirement for base pair interactions.  相似文献   

20.
The 5′ end of the genomic RNA of rubella virus (RUB) contains a 14-nucleotide (nt) single-stranded leader (ss-leader) followed by a stem-and-loop structure [5′(+)SL] (nt 15 to 65), the complement of which at the 3′ end of the minus-strand RNA [3′(−)SL] has been proposed to function as a promoter for synthesis of genomic plus strands. A second intriguing feature of the 5′ end of the RUB genomic RNA is the presence of a short (17 codons) open reading frame (ORF) located between nt 3 and 54; the ORF encoding the viral nonstructural proteins (NSPs) initiates at nt 41 in an alternate translational frame. To address the functional significance of these features, we compared the 5′-terminal sequences of six different strains of RUB, with the result that the short ORF is preserved (although the coding sequence is not conserved) as is the stem part of both the 5′(+)SL and 3′(−)SL, while the upper loop part of both structures varies. Next, using Robo302, an infectious cDNA clone of RUB, we introduced 31 different mutations into the 5′-terminal noncoding region, and their effects on virus replication and macromolecular synthesis were examined. This mutagenesis revealed that the short ORF is not essential for virus replication. The AA dinucleotide at nt 2 and 3 is of critical importance since point mutations and deletions that altered or removed both of these nucleotides were lethal. None of the other mutations within either the ss-leader or the 5′(+)SL [and accordingly within the 3′(−)SL], including deletions of up to 15 nt from the 5′(+)SL and three different multiple-point mutations that lead to destabilization of the 5′(+)SL, were lethal. Some of the mutations within both ss-leader and the 5′(+)SL resulted in viruses that grew to lower titers than the wild-type virus and formed opaque and/or small plaques; in general mutations within the stem had a more profound effect on viral phenotype than did mutations in either the ss-leader or upper loop. Mutations in the 5′(+)SL, but not in the ss-leader, resulted in a significant reduction in NSP synthesis, indicating that this structure is important for efficient translation of the NSP ORF. In contrast, viral plus-strand RNA synthesis was unaffected by the 5′(+)SL mutations as well as the ss-leader mutations, which argues against the proposed function of the 3′(−)SL as a promoter for initiation of the genomic plus-strand RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号