首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 To avoid destruction by complement, normal and malignant cells express membrane glycoproteins that restrict complement activity. These include decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and protectin (CD59), which are all expressed on colonic adenocarcinoma cells in situ. In this study we have characterised the C3/C5 convertase regulators DAF and MCP on the human colonic adenocarcinoma cell line HT29. DAF was found to be a glycosyl-phosphatidylinositol-anchored 70-kDa glycoprotein. Blocking experiments with F(ab′)2 fragments of the anti-DAF monoclonal antibody BRIC 216 showed that DAF modulates the degree of C3 deposition and mediates resistance to complement-mediated killing of the cells. The expression and function of DAF were enhanced by tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β). Cells incubated with interferon γ (IFNγ) did not alter their DAF expression. Two MCP forms were expressed, with molecular masses of approximately 58 kDa and 68 kDa, the lower form predominating. MCP expression was up-regulated by IL-1β, but not by TNFα or IFNγ. Expression of DAF and MCP promotes resistance of colonic adenocarcinoma cells to complement-mediated damage, and represents a possible mechanism of tumour escape. Received: 18 July 1995 / Accepted: 4 January 1996  相似文献   

2.
In the female reproductive tract, the complement system represents a defense mechanism that can act directly against pathogens and cells, and mediates inflammatory response. Endometrial cells are protected from autologous complement attack by membrane-bound complement regulatory proteins (CRPs) that prevent complement activation: membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59). In this work we show that all CRPs were overexpressed after LPS exposure. Maximal stimulatory effect was detected after 6h, and was declining after 12h, reaching control levels in 24h. CD59 was the protein showing the more prominent effect. There seems to be a slight increase of CRP expression in the endometrium of sterile patients that have anti-endometrial antibodies (AEA) in their serum. Our results suggest that under stress, the high expression of CRPs (CD46, CD55, and CD59) could protect endometrial injured cells against complement mediated lysis. The survival of these cells with some biochemical modifications would enable autoimmune response.  相似文献   

3.
Recent studies suggest that DAF (decay accelerating factor), a complement regulatory protein, present in lipid rafts, is utilized by Dr fimbriated Escherichia coli for their binding and internalization. Previous studies in our laboratory have shown that NO (nitric oxide) can reduce the invasion of Dr(+) E. coli and the severity of uterine infection in pregnant rats. Also, the expression level of DAF both at the mRNA and protein levels has been shown to be reduced by NO. Therefore NO mediated down-regulation of DAF appears to be an important factor in reducing the susceptibility to E. coli infection. However, it is unclear if NO can actually modulate the membrane association of DAF and therefore initial bacterial binding to cells. We found that NO induces the delocalization of DAF from the GM1-rich lipid rafts. Using biochemical and cell biological approaches in a uterine epithelial cell model (Ishikawa cells), DAF accumulates in caveolae upon exposure to NO. Interaction of DAF with the caveolar protein, caveolin1, leads to their internalization by endosomes. NO-induced delocalization of DAF from the lipid raft and its accumulation in caveolae are mediated through a cGMP (cyclic guanosine monophosphate) pathway. The acute localized synthesis of NO and its influence on DAF localization may represent an important unrecognized phenomenon of host defence against Dr(+) E. coli bacteria, as well as many disease conditions that involve complement system.  相似文献   

4.
NK cells play a critical role in the rejection of xenografts. In this study, we report on an investigation of the effect of complement regulatory protein, a decay accelerating factor (DAF: CD55), in particular, on NK cell-mediated cytolysis. Amelioration of human NK cell-mediated pig endothelial cell (PEC) and pig fibroblast cell lyses by various deletion mutants and point substitutions of DAF was tested, and compared with their complement regulatory function. Although wild-type DAF and the delta-short consensus repeat (SCR) 1-DAF showed clear inhibition of both complement-mediated and NK-mediated PEC lyses, delta-SCR2-DAF and delta-SCR3-DAF failed to suppress either process. However, delta-SCR4-DAF showed a clear complement regulatory effect, but had no effect on NK cells. Conversely, the point substitution of DAF (L147 x F148 to SS and KKK(125-127) to TTT) was half down-regulated in complement inhibitory function, but the inhibition of NK-mediated PEC lysis remained unchanged. Other complement regulatory proteins, such as the cell membrane-bound form factor H, fH-PI, and C1-inactivator, C1-INH-PI, and CD59 were also assessed, but no suppressive effect on NK cell-mediated PEC lysis was found. These data suggest, for DAF to function on NK cells, SCR2-4 is required but no relation to its complement regulatory function exists.  相似文献   

5.
6.
Acute myeloid leukaemia (AML) blasts rarely express the B7 family of co-stimulatory molecules and do not elicit a clinically significant autologous T-lymphocyte anti-tumour response. The aim of this study was the in vitro modification of AML blasts to an antigen-presenting cell phenotype characterised by upregulated expression of the co-stimulatory molecule CD80 (B7-1). Circulating AML cells were induced to undergo partial differentiation in culture with the cytokines IL-3, IL-6 and GM-CSF; they exhibited variable upregulation of CD80 and continued to express MHC class I and II. These cells remained viable to day 20, in contrast with normal peripheral blood mononuclear cells (PBMNC), which did not survive under the culture conditions. In contrast to unmanipulated blasts, cultured leukaemic cells expressed B7-1. Where initial cytogenetic abnormalities were present, they were also seen in flow-sorted CD80-expressing cells after culture in cytokines, indicating their malignant origin. The immunogenic potential of these cultured cells was highlighted by allogeneic and autologous mixed lymphocyte reactions, in which both differentiated, but not unmanipulated, blasts produced expansion of T-lymphocyte numbers. Autologous cytotoxic T-lymphocyte (CTL) assays indicated specific killing of B7-1+ leukaemic cells, which was greatly enhanced after priming of the T-lymphocytes by B7-1+ blasts prior to the CTL assay, then enabling the CTL to lyse both unmanipulated and differentiated leukaemic cells.  相似文献   

7.
The complement regulatory protein decay accelerating factor (DAF; CD55), inhibits the alternative complement pathway by accelerating decay of the convertase enzymes formed by C3b and factor B. We show, using surface plasmon resonance, that in the absence of Mg(2+), DAF binds C3b, factor B, and the Bb subunit with low affinity (K(D), 14 +/- 0.1, 44 +/- 10, and 20 +/- 7 microm, respectively). In the presence of Mg(2+), DAF bound Bb or the von Willebrand factor type A subunit of Bb with higher affinities (K(D), 1.3 +/- 0.5 and 2.2 +/- 0.1 microm, respectively). Interaction with the proenzyme C3bB was investigated by flowing factor B across a C3b-coated surface in the absence of factor D. The dissociation rate was dependent on the time of incubation, suggesting that a time-dependent conformational transition stabilized the C3b-factor B interaction. Activation by factor D (forming C3bBb) increased the complex half-life; however, the enzyme became susceptible to rapid decay by DAF, unlike the proenzyme, which was unaffected. A convertase assembled with cobra venom factor and Bb was decayed by DAF, albeit far less efficiently than C3bBb. DAF did not bind cobra venom factor, implying that Bb decay is accelerated, at least in part, through DAF binding of this subunit. It is likely that DAF binds the complex with higher affinity/avidity, promoting a conformational change in either or both subunits accelerating decay. Such analysis of component and regulator interactions will inform our understanding of inhibitory mechanisms and the ways in which regulatory proteins cooperate to control the complement cascade.  相似文献   

8.
Decay accelerating factor (DAF) has 4 SCR (short consensus repeat) units. Each SCR unit consists of approx. 60 amino acids characterized by having four conserved cysteine residues and several other highly conserved residues which include proline, tryptophan, tyrosine/phenylalanine and glycine. To determine the disulfide-bonding pattern, we used the urine form of DAF. After thermolysin and trypsin digestion, we isolated seven disulfide-linked peptides by HPLC purification. Because all of the cysteine residues are disulfide-bonded, DAF should contain eight disulfide bonds. After subtilisin and trypsin digestion, we isolated the eighth disulfide-bonded peptides by HPLC purification. From sequence analyses of these peptides, we could identify all disulfide bonds in the 4 SCR units of DAF as being between the first and the third and between the second and the fourth half-cystines within each SCR unit.  相似文献   

9.
Decay-accelerating factor (DAF) is a 75,000 m.w. membrane protein that inhibits autologous complement C3 activation at the cell surface. One-color direct immunofluorescence with anti-DAF antibody and cytofluorographic analysis indicates that normal human monocytes and granulocytes are uniform in expression of DAF, whereas 23% of peripheral blood lymphocytes are DAF deficient. A two-color indirect immunofluorescence method, used to define the phenotype(s) of the DAF-deficient lymphocytes, was less efficient in DAF detection and led to overestimation of the fraction of deficient cells. Nonetheless, the difference between DAF expression by natural killer cells, identified by the CD16 and HNK-1 antigens, was marked. DAF deficiency was intermediate in cells expressing the CD2, CD3, CD4, or CD8 markers. On the basis of the phenotypic definition of natural killer cells and their contribution to the lymphocyte population, it is concluded that a uniform deficiency of DAF on natural killer cells accounts for about one-half of the DAF-deficient lymphocytes in peripheral blood of normal donors. The finding of a complete DAF deficiency in the lymphocytes from a patient with a lymphoproliferative disorder with the predominant proliferation of CD2+, CD3+, CD8+, HNK-1+ large granular lymphocytes gives additional support for the association of DAF-deficiency with natural killer cells.  相似文献   

10.

Decay accelerating factor (DAF), a key complement activation control protein, is a 70 kDa membrane bound glycoprotein which controls extent of formation of the C3 and C5 convertases by accelerating their decay. Using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9) genome editing we generated a novel DAF deficient (Daf?/?) rat model. The present study describes the renal and extrarenal phenotype of this model and assesses renal response to complement-dependent injury induced by administration of a complement-fixing antibody (anti-Fx1A) against the glomerular epithelial cell (podocyte). Rats generated were healthy, viable and able to reproduce normally. Complete absence of DAF was documented in renal as well as extra-renal tissues at both protein and mRNA level compared to Daf+/+ rats. Renal histology in Daf?/? rats showed no differences regarding glomerular or tubulointerstitial pathology compared to Daf+/+ rats. Moreover, there was no difference in urine protein excretion (ratio of urine albumin to creatinine) or in serum creatinine and urea levels. In Daf?/? rats, proteinuria was significantly increased following binding of anti-Fx1A antibody to podocytes while increased C3b deposition was observed. The DAF knock-out rat model developed validates the role of this complement cascade regulator in immune-mediated podocyte injury. Given the increasing role of dysregulated complement activation in various forms of kidney disease and the fact that the rat is the preferred animal for renal pathophysiology studies, the rat DAF deficient model may serve as a useful tool to study the role of this complement activation regulator in complement-dependent forms of kidney injury.

  相似文献   

11.
12.
 Tumor necrosis factor α (TNFα) and interferon γ (IFNγ) are important immunomodulators. They are capable of acting in a synergistic manner on tumor cells in vitro and in vivo. In a clinical phase I study 13 patients with malignant ascites due to abdominal spread of different primary tumors received intraperitoneally (i. p.) TNFα and IFNγ once weekly over 3 – 8 weeks in order to evaluate the effect of locoregionally administered TNFα/IFNγ on ascites formation. Therefore some peripheral and local immunological functional parameters of peripheral blood and malignant ascites were investigated. Mononuclear lymphocytes and natural killer (NK) cell activity of peripheral blood and ascites, TNF-inhibitory activity, soluble p55 and p75 TNF receptors, and prostaglandin E2 values in ascites were measured immediately before and 24 h after each TNFα/IFNγ infusion. Peripheral mononuclear lymphocytes and NK activity decreased significantly 24 h after i. p. TNFα/IFNγ application. However, over the entire treatment schedule, peripheral NK activity in all responders showed a continuous increase, when compared to pre TNFα/IFNγ treatment levels. In contrast, NK activity in non-responders constantly decreased. In contrast to non-responders, TNF-inhibitory activity and soluble p55 TNF receptor levels, determined in ascites, decreased in responders. Taken together, our findings suggest, that successful locoregional i. p. TNFα/IFNγ therapy induces systemic immunological reactions possibly after saturation of soluble p55 TNF receptors in ascites, which leads to an increase of peripheral NK activity. Received: 28 September 1995 / Accepted: 16 November 1995  相似文献   

13.
The activation of immunocompetent cells by lipopolysaccharide (LPS) during severe Gram-negative infections is responsible for the pathophysiological reactions, possibly resulting in the clinical picture of sepsis. Monocytes recognize LPS mainly through the LPS receptor CD14, however, other cellular binding structures have been assumed to exist. In previous studies, we have described an 80-kDa LPS-binding membrane protein (LMP80), which is present on human monocytes as well as endothelial cells. Here we demonstrate that LMP80 is widely distributed and that it forms complexes together with LPS and sCD14. Furthermore, we report on the biochemical purification of LMP80 and its identification as decay-accelerating factor, CD55, by amino acid sequencing and cloning techniques. Our results imply a new feature of CD55 as a molecule which interacts with LPS/sCD14 complexes. However, the involvement of CD55 in LPS-induced signaling remains to be elucidated.  相似文献   

14.
The mammalian immune system has cytotoxic mechanisms, both cellular and humoral, that destroy the membrane integrity of target cells. The main effector molecules of these cytolytic mechanisms—perforin, used by killer lymphocytes, and the membrane attack complex (MAC) components of the complement system—share a unique module called the MAC/perforin module. Until now, both immunological cytotoxicity and the MAC/perforin module have been reported only in jawed vertebrates. Here, we report the identification of a protein containing the MAC/perforin module from the invertebrate cephalochordate, amphioxus (Branchiostoma belcheri), using expressed sequence tag (EST) analysis of the notochord. The deduced amino acid sequence of this molecule is most similar to the primary structure of human complement component C6 and is designated AmphiC6. AmphiC6 shares a unique modular structure, including the MAC/perforin module, with human C6 and other MAC components. Another EST clone predicts the presence of a thioester-containing protein with the closest structural similarity to vertebrate C3 (therefore designated AmphiC3). AmphiC3 retains most of the functionally important residues of vertebrate C3 and is shown by phylogenetic analysis to be derived directly from the common ancestor of vertebrate C3, C4, and C5. Only opsonic activity has been assigned to the invertebrate complement system until now. Therefore, this is the first molecular evidence for complement-mediated immunological cytotoxicity in invertebrates. Received: 24 August 2001 / Accepted: 12 November 2001  相似文献   

15.
16.
The presence of vascular endothelial growth factor (VEGF) was examined by enzyme immunoassay in 60 cytology-documented malignant pleural effusions associated with primary lung cancer and 51 other benign and malignant pleural effusions. Exudative pleural effusions contained significantly higher amounts of VEGF than transudative pleural effusions. Among exudative pleural effusions, levels of VEGF in malignant pleural effusions associated with lung cancer were significantly higher than those of benign exudative pleural effusions. There was no significant difference in pleural VEGF in patients with different histological types or clinical stages of lung cancer. Serial measurement of pleural VEGF levels was performed in six lung cancer patients treated with intrapleural instillation of recombinant interferon γ, and reduction of pleural effusion was associated with decreasing pleural VEGF levels. These findings suggest that VEGF has a role in the accumulation of exudative pleural effusions, especially that of malignant pleural effusion associated with lung cancer. Received: 14 April 1999 / Accepted: 10 June 1999  相似文献   

17.
18.
19.
20.
目的:构建针对Sp1基因siRNA真核表达载体,转染前列腺癌细胞PC-3,研究反式作用因子Sp1时CD59表达的影响.方法:应用siRNA表达载体介导的RNAi技术,构建含特异性sp1基因的重组载体pSUPER-siSp1,脂质体法转染前列腺癌细胞,G418筛选建立稳定表达转染基因的细胞株,Western blotting检测转染细胞中sp1和CD59基因的表达,MTT和染料释放试验判断CD59基因抑制后对补体溶破的抵抗作用.结果:成功构建了Sp1基因siRNA真核表达载体,转染PC-3细胞可表达荧光蛋白,稳定转染的Pc-3细胞Sp1及CD59基因蛋白水平降低,MTT和染料释放实验表明CD59基因受抑制后对补体溶破的抵抗作用降低.结论:siRNA-Sp1重组载体有效地抑制了CD59的表达,降低CD59的抗补体活性,结果证明反式作用因子Sp1是CD59表达调控中重要的转录因子,为探讨CD59在肿瘤细胞中高表达的研究奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号