首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Photoaffinity labeling of soluble auxin-binding proteins.   总被引:6,自引:0,他引:6  
The photoaffinity labeling agent azido-IAA (5-N3-[7-3H]indole-3-acetic acid), a biologically active analogue of the endogenous auxin indole-3-acetic acid, was used to search for auxin-binding proteins in the soluble fraction of Hyoscyamus muticus cells. Azido-IAA became covalently attached to three polypeptides with a high specific activity. The labeling was specific for IAA and not due to random tagging. Two polypeptides with molecular masses of 31 and 24 kDa in the 0-30% ammonium sulfate fraction were labeled after UV photolysis at 0 degree C but not at -196 degrees C, and appeared to have a high affinity indole-binding site(s) for which active, non-indole auxins were not good ligands. A third polypeptide with a molecular mass of 25 kDa present in the 50-60% ammonium sulfate fraction labeled exclusively at -196 degrees C and had a significant affinity for active auxins but not for inactive indoles. The azido-IAA labeling pattern, pI, competition results, and immunoprecipitation all indicate that the 31- and 24-kDa polypeptides are related to the basic form of endo-1,3-beta-glucanase (EC 3.2.1.39). Azido-IAA labeling polypeptides equivalent to the 31- and 24-kDa species were apparently also present in the cell wall. The low pH optimum for binding of azido-IAA to the 25-kDa polypeptide suggests the location of the active protein in a compartment such as the vacuole or a transport vesicle rather than in the cytosol.  相似文献   

2.
Binding proteins, thought to be auxin receptors, can be solubilised from maize (Zea mays L.) membranes after acetone treatment. From these crude extracts, receptor preparations of over 50% purity can be obtained by a reliable, straight-forward procedure involving three chromatographic steps — anion exchange, gel filtration and high-resolution anion exchange. Such preparations have been used to immunise rats for subsequent production of monoclonal antibodies. By the further step of native polyacrylamide gel electrophoresis the semi-purified preparations yield homogeneous, dimeric (22-kilodalton, kDa) auxin-binding protein, which has been used to produce a polyclonal rabbit antiserum. The preliminary characterisation of this antiserum and of the five monoclonal antibodies is presented. Two of the monoclonal antibodies specifically recognise the major 22-kDa-binding protein polypeptide whilst the other three recognise, in addition, a minor 21-kDa species. All the monoclonal antibodies recognise the polypeptide rather than the glycan side chain and the polyclonal antiserum also recognises deglycosylated binding protein. The antibodies have been used to quantify the abundance of auxinbinding protein in a number of tissues of etiolated maize seedlings. Root membranes contain 20-fold less binding protein than coleoptile membranes.Abbreviations ABP auxin-binding protein - DEAE diethylaminoethyl - Ig immunoglobulin - kDa kilodalton - NAA naphthalene-1-acetic acid - Mr relative molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

3.
Several properties of a 43-kilodalton (kDa) auxin-binding protein (ABP) having 22-kDa subunits are shared by a class of auxin binding designated Site I. The spatial distribution of the ABP in the maize (Zea mays L.) mesocotyl corresponds with the distribution of growth induced by naphthalene-1-acetic acid and with the distribution of Site I binding as previously shown by J.D. Walton and P.M. Ray (1981, Plant Physiol. 68, 1334–1338). The greatest abundance of both ABP and Site I activity is at the apical region of the mesocotyl. The ABP and Site I activity co-migrate in isopycnic centrifugation with the endoplasmic-reticulum marker, cytochrome-c reductase. Red light, at low and high fluence, far-red and white light were used to alter the elongation rate of apical 1-cm sections of etiolated maize mesocotyls, the amount of auxin binding, and the abundance of the ABP. Relative changes in auxin binding and the ABP were correlated, but the growth rate was not always correlated with the abundance of the ABP.Abbreviations ABP auxin-binding protein - ER endoplasmic reticulum - FR far-red light - kDa kilodalton - NAA naphthalene-1-acetic acid - PM plasma membrane - R red light - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

4.
The 22 kDa auxin-binding proteins in higher plants have received considerable attention as candidates for an auxin receptor. A cDNA clone Ca-ERabp1 of hot pepper (Capsicum annum) was isolated using the oligonucleotides as PCR primers. The cDNA codes for a polypeptide related to the major 22 kDa auxin-binding protein from maize and Arabidopsis ERabp1. The deduced amino acid sequence contains an endoplasmic reticulum retention signal, the KDEL sequence located at the C-terminal end, and has two possible auxin-binding sites, HRHSCE and YDDWSVPHTA conserved sequences. Northern hybridization analysis revealed that the Ca-ERabp1 gene is differentially expressed in total RNA isolated from different organs of a pepper plant, showing the highest level of expression in fruits but barely detectable in leaves and roots.  相似文献   

5.
《Research in virology》1990,141(1):69-80
The immunoblotting technique was used to analyse polypeptides of purified Epstein-Barr virus reacting with antibodies present in sera from clinically healthy individuals, from patients with infectious mononucleosis (IM) or AIDS, and from renal transplant recipients with molecular sizes in the range of 40–290 kDa were detected.The 47- and 160-kDa nucleocapsid polypeptides, as well as the 72-, 74-, 140-, 220- and 290-kDa membrane polypeptides were the major viral proteins detected in the sera. Sera from clinically healthy individuals contained antibodies directed against all EBV membrane and nucleocapsid antigens. Sera from renal transplant recipients, from patients with IM and from patients with AIDS failed to react with certain nucleocapsid and membrane antigens; in particular, sera from AIDS patients and renal transplant recipients did not react with the 220-kDa polypeptide, one of the major membrane antigens, while sera from subjects with IM and from healthy individuals did.A high proportion of sera from patients with IM (38% vs 5% of clinically healthy individuals and 0–5% of the AIDS patients and renal transplant recipients) reacted with a 42-kDa polypeptide, suggesting its possible role in acute EBV infection.  相似文献   

6.
A. Belver  R. L. Travis 《Protoplasma》1990,155(1-3):76-84
Summary The short-term effects of NaCl and mannitol stress on plasma membrane (PM) polypeptides from corn roots (Zea mays L.) were determined using two-dimensional gel electrophoresis following radiolabeled amino acid incorporation. After 2.5 hours, both stress treatments altered synthesis of several polypeptides. Changes included up-regulation of some polypeptides with concomitant down-regulation of others. Some changes were unique to the stress treatment while others were common to both NaCl and mannitol. No new polypeptides appeared in either case. Pulse-chase experiments following 0.5-hours and 2.5-hours incubation periods with radiolabeled amino acids did not reveal differences in turnover of PM polypeptides. The results support the contention that altered synthesis of PM proteins under stress may contribute to the alteration of membrane function.Abbreviations ER endoplasmic reticulum: GA Golgi - PM plasma membrane - PVPP polyvinylpolypyrrolidone  相似文献   

7.
We have characterized the integral membrane polypeptides of liver peroxisomes from untreated rats and rats treated with clofibrate, a peroxisome proliferator. Membranes, prepared by treatment of purified peroxisomes with sodium carbonate, were used to raise an antiserum in rabbits. Immunoblot analysis demonstrated the reaction of this antiserum with six peroxisomal integral membrane polypeptides (molecular masses, 140, 69, 50, 36, 22, and 15 kDa). Treatment of rats with the hypolipidemic drug clofibrate caused a 4- to 10-fold induction in the 69-kDa integral membrane polypeptide, while the other integral membrane polypeptides remained unchanged or varied to a lesser extent. The anti-peroxisomal membrane serum reacted with two integral membrane polypeptides of the endoplasmic reticulum which co-migrated with the 50- and 36-kDa integral membrane polypeptides of the peroxisome. Biochemical and immunoblot analyses indicated that these integral membrane polypeptides were co-localized to peroxisomes and endoplasmic reticulum. Immunoprecipitation of in vitro translation products of RNA isolated from free and membrane-bound polysomes indicated that the 22-, 36-, and 69-kDa integral membrane polypeptides were synthesized on free polysomes, while the 50-kDa integral membrane polypeptide was predominantly synthesized on membrane-bound polysomes. The predominant synthesis of the 50-kDa integral membrane polypeptide on membrane-bound polysomes raises interesting possibilities concerning its biosynthesis.  相似文献   

8.
Total polyadenylated RNA from ripening or germinating Ricinus communis L. endosperm was translated in rabbit reticulocyte lysate in the absence or presence of canine pancreatic microsomes. The products were immunoprecipitated using antibodies raised againts Triton X-114-extracted integral membrane proteins of protein bodies or glyoxysomes. While the proteins of proteinbody membranes were found to insert co-translationally into added microsomes, this was not observed in the case of glyoxysomal proteins. This observation was confirmed using antibodies raised against a purified glyoxysome membrane protein, alkaline lipase. These results indicate that different routes exist for the insertion of membrane proteins into the two organelles. In both cases membrane-protein insertion does not appear to be accompanied by proteolytic processing.Abbreviations anti-PB antiserum to integral protein-body membrane proteins - anti-G antiserum to integral glyoxysomal membrane proteins - anti-L antiserum to alkaline lipase - ER endoplasmic reticulum - Mr relative molecular mass - mRNA poly(A)-rich messenger RNA - PAGE polyacrylamide gel electrophoresis - poly(A) polyadenylic acid - SDS sodium dodecyl sulphate  相似文献   

9.
The major storage proteins, polypeptides of 31 and 47 kilodaltons (kDa), from the seeds of cocoa (Theobroma cacao L.), have been identified and partially purified by preparative gel electrophoresis. The polypeptides were both N-terminally blocked, but some N-terminal amino-acid sequence was obtained from a cyanogen bromide peptide common to both polypeptides, permitting the construction of an oligonucleotide probe. This probe was used to isolate the corresponding copy-DNA (cDNA) clone from a library made from poly(A)+ RNA from immature cocoa beans. The cDNA sequence has a single major open reading frame, that translates to give a 566-amino-acid polypeptide of Mr 65 612. The existence of a common precursor to the 31- and 47-kDa polypeptides of this size was confirmed by immunoprecipitation from total poly(A)+RNA translation products. The precursor has an N-terminal hydrophobic sequence which appears to be a typical signal sequence, with a predicted site of cleavage 20 amino acids after the start. This is followed by a very hydrophilic domain of 110 amino acids, which, by analogy with the cottonseed -globulin, is presumed to be cleaved off to leave a domain of approx. 47 kDa, very close to the observed size of the mature polypeptide. Like the hydrophilic domain of the cottonseed -globulin the cocoa hydrophilic domain is very rich in glutamine and charged residues (especially glutamate), and contains several Cys-X-X-X-Cys motifs. The cyanogen-bromide peptide common to the 47-kDa and 31-kDa polypeptides is very close to the proposed start of the mature domain, indicating that the 31-kDa polypeptide arises via further C-terminal processing. The polypeptide sequence is homologous to sequences of the vicilin class of storage proteins, previously found only in legumes and cotton. Most of these proteins have a mature polypeptide size of approx. 47 kDa, and are synthesised as precursors only slightly larger than this. Some, however, are larger polypeptides (e.g. -conglycinin from soybean is 72 kDa), usually due to an additional N-terminal domain. In cottonseed the situation appears to parallel that in cocoa in that the vicilin is synthesised as an approx. 70-kDa precursor and then processed to a 47-kDa (and in the case of cocoa also a 31-kDa) mature protein. In this context it is interesting that cotton is closer in evolutionary terms to cocoa than are the legumes, both cotton and cocoa being in the order Malvales.Abbreviations A absorbance - cDNA copy DNA - IgG immunoglobulin G - kb kilobase pairs - kDa kilodaltons - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulphate-polyacylamide gel electrophoresis The authors are very grateful to Dr R. Jennings of the Virology Department, Sheffield University Medical School, for help in raising antibodies.  相似文献   

10.
Isolated roots of Lycopersicon esculentum Mill., cultured in axenic conditions were starved of sulphate or phosphate, and uptake capacities for the respective oxyanion-transport systems were observed for several days after sulphate or phosphate withdrawal. Sulphate-uptake capacity of the intact roots, measured in a 20-min period, increased from a control level of 100 nmol · g–1 · h–1 to 1100 nmol · g–1 · h–1 in 10 d, and phosphate-uptake capacity increased from 500 to 1400 nmol · g–1 · h–1 over 4 d. Newly synthesised polypeptides of these root cultures were pulse-labelled in vivo for 2 h, by adding [3H]leucine to the culture medium. The tissue was immediately homogenised and soluble and membrane fractions were prepared. A highly purified plasma-membrane fraction was separated from the crude microsomal membrane fraction using an aqueous two-phase partitioning technique. All fractions were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. A 28-kilodalton (kDa) soluble polypeptide, and 36-, 43-, and 47-kDa plasma-membrane polypeptides were observed to have increased labelling after 4 d of sulphate deprivation. Longer periods resulted in additional polypeptides with increased [3H]leucine incorporation. The synthesis of a 25-kDa membrane polypeptide and a 65-kDa soluble polypeptide was increased after 4 d of phosphate deprivation. Two-dimensional electrophoresis afforded greater resolution of the plasmamembrane polypeptides, confirming increased synthesis of the 36-kDa polypeptide and the presence of the 28-kDa polypeptide in the plasma-membrane preparation from sulphate-starved roots. These polypeptides were also observed in protein-stained two-dimensional gels as low-abundant protein components of the plasmamembrane fraction. It is suggested that the 36-kDa polypeptide may be a component of the plasma-membrane sulphate-transport system and that the 25-kDa polypeptide may be a component of a phosphate-transport system.Abbreviations kDa kilodalton(s) - PAGE polyacrylamide gel electrophoresis - pI isoelectric point - SDS Sodium dodecyl sulphate This work was supported by the Agricultural and Food Research Council via grants-in-aid to Long Ashton Research Station. We are also grateful for discussions with our colleagues D.T. Clarkson (LARS) and J.-C. Davidian (ENSA/INRA, Montpellier).  相似文献   

11.
There is evidence that auxin-binding protein 1 (ABP1) is an auxin receptor on the plasma membrane. Maize (Zea mays L.) possesses a high level of auxin-binding activity due to ABP1, but no other plant source has been shown to possess such an activity. We have analyzed the ABP1 content of tobacco (Nicotiana tabacum L.) to examine whether or not the ABP1 content of maize is exceptionally high among plants. The ABP1 content of tobacco leaves was shown by quantitative immunoblot analysis to be between 0.7 and 1.2 μg ABP1 per gram of fresh leaf. This value is comparable to the reported value in maize shoots, indicating that ABP1 is present at a similar level in both monocot and dicot plants. The ABP1 content of tobacco leaves was increased up to 20-fold by expression of a recombinant ABP1 gene, and decreased to half of the original value by expression of the antisense gene. Although ABP1 was found mainly in the endoplasmic reticulum fraction, a secreted protein showing a molecular size and epitopes similar to intracellular ABP1 was also detected in the culture medium of tobacco leaf disks. The secretion of this protein was dependent on the expression level of the ABP1 gene. Received: 24 February 1999 / Accepted: 25 March 1999  相似文献   

12.
Photoaffinity labeling with [32P] 8-azidoadenosine 5-triphosphate (8-N3ATP) was used to identify putative binding sites on tobacco (Nicotiana tabacum L. and N. rustica L.) leaf ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase, EC 4.1.1.39). Incorporation of 32P was observed in polypeptides corresponding to both RuBPCase subunits when desalted leaf and chloroplast extracts, and purified RuBPCase were irradiated with ultraviolet light in the presence of [32P] 8-N3ATP. 32P-labeling was dependent upon ultraviolet irradiation and occurred with [32P] 8-N3ATP labeled in the -position, indicating covalent incorporation of the photoprobe. Both [32P] 8-N3ATP and [32P] 8-N3GTP were incorporated to a similar extent into the 53-kilodalton (kDa) large subunit (LSu), but incorporation of [32P] 8-N3GTP into the 14-kDa small subunit (SSu) of RuBPCase was <5% of that measured with [32P] 8-N3ATP. Distinct binding sites for 8-N3ATP on the two subunits were indicated by different apparent K D values, 3 and 18 M for the SSu and LSu, respectively, and differences in the response of photoaffinity labeling to Mg2+, anions and enzyme activation. Active-site-directed compounds, including the non-gaseous substrate ribulose 1,5-bisphosphate, the reaction intermediate analog 2-carboxyarabinitol-1,5-bisphosphate and several phosphorylated effectors afforded protection to the LSu site against photoincorporation but provided almost no protection to the SSu. These results indicate that 8-N3ATP binds to the active-site region of the LSu and a distinct site on the SSu of RuBPCase. Experiments conducted with intact pea (Pisum sativum L.) and tobacco chloroplasts showed that the SSu was not photolabeled with [32P] 8-N3ATP in organello or in undesalted chloroplast lysates but was photolabeled when lysates were ultrafiltered or desalted. These results indicate that 8-N3ATP binds to a site on the SSu that has physiological significance.Abbreviations kDa kilodalton - LSu large subunit - 8-N3ATP 8-azidoadenosine 5-triphosphate - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SSu small subunit Kentucky Agricultural Experiment Station Journal Article No. 89-3-150The authors acknowledge the technical assistance of J.C. Anderson. This work was supported in part by National Institute of Health grant GM 35766 to B.E.H.  相似文献   

13.
Gap junction-enriched fractions were prepared from larvae of the tobacco budworm Heliothis virescens using the NaOH procedure in the presence or absence of protease inhibitors and were analyzed by SDS-PAGE, immunoblotting and EM immunocytochemistry. Protease inhibitor fractions contained a 48-kDa protein in addition to the 10 proteins in fractions with and without inhibitors. Three polyclonal antibodies were used as probes for gap junction plaques and proteins: R16, against an 40-kDa candidate gap junction protein from Drosophila melanogaster; R17, against the 40-kDa candidate gap junction protein from H. virescens; and R18AP, an affinity purified antibody against a consensus sequence of N-terminal amino acids 2–21 of the H. virescens 40-kDa protein. R16, R17, and R18AP stain the 40- and 48-kDa proteins, R16 and R18AP stain a 64-kDa protein, and R16 stains an 30-kDa protein in the absence of inhibitors. Inclusion of protease inhibitors had no effect on gap junction ultrastructure. R16 and R17 label gap junction plaques in crude membrane and NaOH fractions, whereas R18AP exhibits only a low level of reactivity with gap junctions in crude membrane fractions and none with gap junctions in NaOH fractions. The results show that the 30-, 40-, 48- and 64-kDa proteins are immunologically related and are associated with gap junctions in H. virescens, the N-terminus of the 40-kDa protein is relatively inaccessible or easily lost, and the 48-kDa protein is protease-sensitive.  相似文献   

14.
P. -A. Siegenthaler  L. Bovet 《Planta》1993,190(2):231-240
Protein-phosphorylation activity has been reported in chloroplast envelope membranes of several species. In spinach (Spinacia oleracea L.), we found three major phosphoproteins after incubation in vitro of envelope membranes in the presence of [-32P]ATP. A 67-kDa phosphoprotein was associated with both inner and outer envelope membranes whereas 26- and 14-kDa proteins were observed in the inner membrane. Although the phosphorylation of the 67-kDa protein is likely to take place via its phosphoglucomutase activity (Salvucci et al., 1990, Plant Physiol. 93, 105–109), the mechanism by which 32P is incorporated into the 26- and 14-kDa proteins remains to be elucidated. To this aim, we have compared the conditions under which phosphorylation occurs in these three proteins. The effects of Mg2+, Ca2+, pH, ATP and H7 [1-(5-isoquinolinesulfonyl)-2-methylpiperazine], a specific inhibitor of protein-kinase C, as well as pulse-chase experiments with cold ATP, showed that the phosphorylation mechanism was identical for the 26- and 14-kDa proteins but quite different for the 67-kDa one. The protein kinase involved in the phosphorylation of the 26- and 14-kDa proteins was Ca2+-dependent, which was not the case of the 67-kDa protein. In addition, the use of a Triton X-114 phase-separation treatment indicated that both the 26- and 14-kDa proteins exhibited strong hydrophobic properties, in contrast to the hydrophilic character of the 67-kDa phosphoprotein. As indicated by analyses of phosphoamino acids, the three proteins were exclusively phosphorylated on serine residues. Furthermore, a treatment of envelopes by phospholipase C prior to the phosphorylation process inhibited 32P incorporation into the three phospho-proteins to different extents (61%, 50% and 29% inhibition for the 67-, 14- and 26-kDa proteins, respectively). These results show that phosphatidylcholine and — or phosphatidylglycerol but not phosphatidylinositol were involved in this phosphorylation process.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - H7 1-(5-isoquinolinesulfonyl)-2-methylpiperazine - Mr relative molecular mass - PAGE polyacrylamide gel electrophoresis - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - SDS sodium dodecyl sulfate The authors are grateful to Mrs. Delphine Herrmann and Mr. Daniel Leemann for their skillful technical assistance. This study was supported by the Swiss National Science Foundation (Grant No. 31.26386.89). This work is part of a doctoral program which is carried out by L.B. in the Laboratoire de Physiologie végétale, Université de Neuchâtel.  相似文献   

15.
The periacrosomal plasma membrane of mammalian spermatozoa functions both in recognition and in binding of the egg's zona pellucida and in the acrosome reaction. This study characterizes two antigenically related proteins with molecular weights of 35 kD (PM35) and 52 kD (PM52) of the guinea pig sperm periacrosomal plasma membrane. Polyclonal antisera were prepared against electrophoretically purified PM35 or PM52. Each antiserum recognized both the 35-kD and 52-kD polypeptides on Western blots, indicating that they are structurally related. This conclusion was supported by peptide mapping experiments demonstrating comparably sized fragments of both PM35 and PM52. Both PM35 and PM52 behave as integral membrane proteins during phase-separation analysis with Triton X-114. Electron microscopic immunocytochemistry and differential fractionation of sperm membranes established that both PM35 and PM52 are exclusively localized to the periacrosomal plasma membrane. Three different antisera were used for ultrastructural studies, and each specifically bound the cytoplasmic but not the extracellular membrane surface. The electrophoretic mobilities of the PM35 and PM52 polypeptides were unchanged during sperm maturation and during the ionophore-induced acrosome reaction. The localization of PM35 and PM52 suggests a potential role for these integral plasma membrane proteins in signal transduction or membrane fusion events of the acrosome reaction. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Previous purification and characterization of the yeast vacuolar proton-translocating ATPase (H(+)-ATPase) have indicated that it is a multisubunit complex consisting of both integral and peripheral membrane subunits (Uchida, E., Ohsumi, Y., and Anraku, Y. (1985) J. Biol. Chem. 260, 1090-1095; Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989) J. Biol. Chem. 264, 19236-19244). We have obtained monoclonal antibodies recognizing the 42- and 100-kDa polypeptides that were co-purified with vacuolar ATPase activity. Using these antibodies we provide further evidence that the 42-kDa polypeptide, a peripheral membrane protein, and the 100-kDa polypeptide, an integral membrane protein, are genuine subunits of the yeast vacuolar H(+)-ATPase. The synthesis, assembly, and targeting of three of the peripheral subunits (the 69-, 60-, and 42-kDa subunits) and two of the integral membrane subunits (the 100- and 17-kDa subunits) were examined in mutant yeast cells containing chromosomal deletions in the TFP1, VAT2, or VMA3 genes, which encode the 69-, 60-, and 17-kDa subunits, respectively. The steady-state levels of the various subunits in whole cell lysates and purified vacuolar membranes were assessed by Western blotting, and the intracellular localization of the 60- and 100-kDa subunits was also examined by immunofluorescence microscopy. The results suggest that the assembly and/or the vacuolar targeting of the peripheral subunits of the yeast vacuolar H(+)-ATPase depend on the presence of all three of the 69-, 60-, and 17-kDa subunits. The 100-kDa subunit can be transported to the vacuole independently of the peripheral membrane subunits as long as the 17-kDa subunit is present; but in the absence of the 17-kDa subunit, the 100-kDa subunit appears to be both unstable and incompetent for transport to the vacuole.  相似文献   

17.
Induction of corn (Zea mays L.) seedling root membrane polypeptides was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis in relation to induction of nitrate uptake. When nitrate uptake was studied using freshly harvested roots from 4-day old corn seedlings, a steady state rate of uptake was achieved after a lag of 2 to 3 hours. The plasma membrane fraction from freshly harvested roots (uninduced) and roots pretreated in 5 millimolar nitrate for 2.5 or 5 hours (induced) showed no differences in the major polypeptides with Coomassie blue staining. Autoradiography of the 35S-methionine labeled proteins, however, showed four polypeptides with approximate molecular masses of 165, 95, 70, and 40 kilodaltons as being induced by both 2.5 and 5-hour pretreatment in 5 millimolar nitrate. All four polypeptides appeared to be integral membrane proteins as shown by Triton X-114 (octylphenoxypolyethoxyethanol) washing of the membrane vesicles. Autoradiography of the two-dimensional gels revealed that several additional low molecular weight proteins were induced. A 5-hour pretreatment in 5 millimolar chloride also induced several of the low molecular weight polypeptides, although a polypeptide of about 30 kilodaltons and a group of polypeptides around 40 kilodaltons appeared to be specifically induced by nitrate. The results are discussed in relation to the possibility that some of the polypeptides induced by nitrate treatment may be directly involved in nitrate transport through the plasma membrane.  相似文献   

18.
Gonzalez-Ceron, L., Rodriguez, M. H., Wirtz, R. A., Sina, B. J., Palomeque, O. L., Nettel, J. A., and Tsutsumi, V. 1998.Plasmodium vivax:A monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface.Experimental Parasitology90, 203–211. The major surface circumsporozoite (CS) proteins are known to play a role in malaria sporozoite development and invasion of invertebrate and vertebrate host cells.Plasmodium vivaxCS protein processing during mosquito midgut oocyst and salivary gland sporozoite development was studied using monoclonal antibodies which recognize different CS protein epitopes. Monoclonal antibodies which react with the CS amino acid repeat sequences by ELISA recognized a 50-kDa precursor protein in immature oocyst and additional 47- and 42-kDa proteins in older oocysts. A 42-kDa CS protein was detected after initial sporozoite invasion of mosquito salivary glands and an additional 50-kDa precursor CS protein observed later in infected salivary glands. These data confirm previous results with otherPlasmodiumspecies, in which more CS protein precursors were detected in oocysts than in salivary gland sporozoites. A monoclonal antibody (PvPCS) was characterized which reacts with an epitope found only in the 50-kDa precursor CS protein. PvPCS reacted with allP. vivaxsporozoite strains tested by indirect immunofluorescent assay, homogeneously staining the sporozoite periphery with much lower intensity than that produced by anti-CS repeat antibodies. Immunoelectron microscopy using PvPCS showed that the CS protein precursor was associated with peripheral cytoplasmic vacuoles and membranes of sporoblast and budding sporozoites in development oocysts. In salivary gland sporozoites, the CS protein precursor was primarily associated with micronemes and sporozoite membranes. Our results suggest that the 50-kDa CS protein precursor is synthesized intracellularly and secreted on the membrane surface, where it is proteolytically processed to form the 42-kDa mature CS protein. These data indicate that differences in CS protein processing in oocyst and salivary gland sporozoites development may occur.  相似文献   

19.
Blumenthal SS  Clark GB  Roux SJ 《Planta》2004,218(6):965-975
In immunoblot assays, at least three putative nuclear intermediate filament (NIF) proteins were detected in nuclear envelope-matrix (NEM) and lamin (L1) fractions of nuclei from plumules of dark-grown pea (Pisum sativum L.) seedlings. These NIF proteins had apparent molecular masses of ca. 65, 60, and 54 kDa (also referred to as p65, p60, and p54), and appeared as multiple isoelectric forms, with pIs ranging from ca. 4.8 to 6.0. Polyclonal and monoclonal antibodies were raised to the 65-kDa NIF protein bands excised from gels after electrophoresis. These anti-pea antibodies were specifically cross-reactive with the pea nuclear p65, p60, and p54 proteins and also with chicken lamins. Sequence alignment of peptide fragments obtained from the 65- and 60-kDa pea NIF proteins showed similarity with animal intermediate filament proteins such as lamins and keratins and with certain plant proteins predicted to have long coiled-coil domains. These pea NIF proteins were further purified and enriched from the NEM fraction using methods similar to those used for isolating animal lamins. When negatively stained and viewed by transmission electron microscopy, the filaments in the pea lamin (L1) fraction appeared to be 6–12 nm in diameter. As assayed by immunofluorescence cytochemistry using a confocal laser-scanning microscope, fixed pea plumule cells displayed uniform as opposed to peripheral nuclear staining by several of the antibody preparations, both polyclonal and monoclonal. This report describes the biochemical and immunological properties of these pea NIF proteins.Abbreviations IF Intermediate filament - L Lamin fraction - LM Lamina-matrix fraction - MAb JLA20 Anti-chicken actin monoclonal antibody - MAb LN43 Anti-human lamin B2 monoclonal antibody - MAb PL19 Anti-pea lamin #19 monoclonal antibody - MAb TIB 131 Anti-intermediate filament monoclonal antibody - N Nuclei fraction - NEM Nuclear envelope-matrix fraction - NIF Nuclear intermediate filament - PAb PL3 Anti-pea lamin #3 polyclonal antibody  相似文献   

20.
ABSTRACT. Tetrahymena thermophila cells were labeled with sulfosuccinimidyl 6-(biotinamido) hexanoate, a sensitive nonradioactive probe for cell surface proteins, and Western blots of axonemes and ciliary membrane vesicles were compared to cilia fractionated with Triton X-114 (TX-114) in order to study the orientation of ciliary membrane proteins. Greater than 40 ciliary surface polypeptides, from >350 kDa to <20 kDa, were resolved. The major surface 50–60 kDa proteins are hydrophobic and partition into the TX-114 detergent phase. Two high molecular weight proteins, one of which is biotinylated, comigrate with the heavy chains of ciliary dynein, sediment at 14S in a sucrose gradient, and partition into the TX-114 aqueous phase. Fractions containing these high molecular weight proteins as well as fractions enriched in 88-kDa and 66-kDa polypeptides contain Mg2+-ATPase activities. Detergent-solubilized tubulins partition into the TX-114 aqueous phase, are not biotinylated, and must not be exposed to the ciliary surface. The detergent-insoluble axoneme and membrane fraction contains a 36-kDa polypeptide and a portion of the 50-kDa polypeptides that otherwise partition into the detergent phase. These polypeptides could not be solubilized by ATP or by NaCl extraction and appear to be associated with pieces of ciliary membrane tightly linked to the axoneme. The ciliary membrane polypeptides were also tested for Concanavalin A binding and at least sixteen Con A-binding polypeptides were resolved. Of the major Con A-binding polypeptides, three are hydrophobic and partition into the TX-114 detergent phase, three partition into the TX-114 aqueous phase, and four partition exclusively in the detergent-insoluble fraction, which contains axonemes and detergent-resistant membrane vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号