首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An early transient burst of poly(ADP-ribosyl)ation of nuclear proteins was recently shown to be required for apoptosis to proceed in various cell lines (Simbulan-Rosenthal, C., Rosenthal, D., Iyer, S., Boulares, H., and Smulson, M. (1998) J. Biol. Chem. 273, 13703-13712) followed by cleavage of poly(ADP-ribose) polymerase (PARP), catalyzed by caspase-3. This inactivation of PARP has been proposed to prevent depletion of NAD (a PARP substrate) and ATP, which are thought to be required for later events in apoptosis. The role of PARP cleavage in apoptosis has now been investigated in human osteosarcoma cells and PARP -/- fibroblasts stably transfected with a vector encoding a caspase-3-resistant PARP mutant. Expression of this mutant PARP increased the rate of staurosporine and tumor necrosis factor-alpha-induced apoptosis, at least in part by reducing the time interval required for the onset of caspase-3 activation and internucleosomal DNA fragmentation, as well as the generation of 50-kilobase pair DNA breaks, thought to be associated with early chromatin unfolding. Overexpression of wild-type PARP in osteosarcoma cells also accelerated the apoptotic process, although not to the same extent as that apparent in cells expressing the mutant PARP. These effects of the mutant and wild-type enzymes might be due to the early and transient poly(ADP-ribose) synthesis in response to DNA breaks, and the accompanying depletion of NAD apparent in the transfected cells. The accelerated NAD depletion did not seem to interfere with the later stages of apoptosis. These results indicate that PARP activation and subsequent cleavage have active and complex roles in apoptosis.  相似文献   

2.
The effect of poly(ADP-ribosyl)ation on the stability of p53 in SK-HEP1 cells treated with UV light was examined. Intracellular levels of p53 increased in cells treated with a low dose of UV light (20 J/m2), whereas they increased but then declined after a higher dose of UV (100 J/m2). Intracellular levels of p53 in the UV treated SK-HEP1 cells were dependent on the UV dose. Use of proteasome inhibitors revealed that p53 is degraded by proteasomal proteolysis after high doses of UV light. We present evidence that, at low doses, poly(ADP-ribose)polymerase (PARP) poly(ADP-ribosyl)ates p53 and protects it from proteasomal degradation before caspase-3 is activated, whereas at high doses the cells undergo UV induced apoptosis and PARP is cleaved by caspase-3 before it can protect p53 from degradation. Destabilization of p53 by cleavage of PARP may be important in cell fate decision favoring apoptosis.  相似文献   

3.
Apoptosis is characterized by various cell morphological and biochemical features, one of which is the internucleosomal degradation of genomic DNA. The role of the human chromatin-bound Ca(2+)- and Mg(2+)-dependent endonuclease (CME) DNAS1L3 and its inhibition by poly(ADP-ribosyl)ation in the DNA degradation that accompanies apoptosis was investigated. The nuclear localization of this endonuclease is the unique feature that distinguishes it from other suggested apoptotic nucleases. Purified recombinant DNAS1L3 was shown to cleave nuclear DNA into both high molecular weight and oligonucleosomal fragments in vitro. Furthermore, exposure of mouse skin fibroblasts expressing DNAS1L3 to inducers of apoptosis resulted in oligonucleosomal DNA fragmentation, an effect not observed in cells not expressing this CME, as well as in a decrease in cell viability greater than that apparent in the control cells. Recombinant DNAS1L3 was modified by recombinant human poly(ADP-ribose) polymerase (PARP) in vitro, resulting in a loss of nuclease activity. The DNAS1L3 protein also underwent poly(ADP-ribosyl)ation in transfected mouse skin fibroblasts in response to inducers of apoptosis. The cleavage and inactivation of PARP by a caspase-3-like enzyme late in apoptosis were associated with a decrease in the extent of DNAS1L3 poly(ADP-ribosyl)ation, which likely releases DNAS1L3 from inhibition and allows it to catalyze the degradation of genomic DNA.  相似文献   

4.
In hepatocytes the DNA repair enzyme poly(ADP-ribose)polymerase (PARP) is not proteolytically cleaved during apoptosis. The reason for this was investigated using a cell-free system that consisted of isolated nuclei from hepatocytes or thymocytes and cytosolic extracts from hepatocytes or thymocytes undergoing apoptosis. It was found that liver PARP is resistant to proteolytic cleavage by the caspases present in the cytosolic extracts. Furthermore, liver PARP was not cleaved by recombinant human caspase-3. It is concluded that PARP proteolysis cannot be used as a marker for hepatocyte apoptosis.  相似文献   

5.
The primary objective of this study was to determine whether caspases are involved in arsenic trioxide(ATO)-induced apoptosis of human myeloid leukemia cells. A secondary objective was to determine whether apoptosis induced by ATO compared with VP-16 is differentially affected by an activator of protein kinase C (PKC), phorbol 12-myristate 13-acetate (PMA), which has been reported to inhibit apoptosis induced by some chemotherapeutic agents. NB4 and HL60 cells were incubated with ATO in the presence and absence of the caspase protease inhibitors Z-VAD.fmk or Y-VAD. cho. Apoptosis was assessed by morphology, DNA laddering and flow cytometry. Poly (ADP-ribose) polymerase (PARP) cleavage was used as a marker for the activation of caspases. PARP cleavage occurred during ATO-induced apoptosis in both NB4 and HL60 cells. Z-VAD.fmk, a broad-spectrum inhibtor, could block ATO-induced apoptosis and PARP cleavage, whilst Y-VAD. cho, a selective inhibitor of caspase 1, had no such effect. PMA pre-incubation for up to 8 hours under conditions known to activate PKC had no effect on either ATO- or VP-16-induced apoptosis. We conclude that in cultured myeloid leukemia cells ATO-induced apoptosis is executed by caspases from the distal, PARP-cleaving part of the activation cascade and that PKC activation has no effect on apoptosis induced by either ATO or VP-16 in these cells.  相似文献   

6.
Se-methylselenocysteine (MSC) inhibits mouse mammary epithelial tumor cell (TM6) growth. When synchronized TM6 cells were exposed to 50 microM MSC, either for 30 minutes or continuous, the 116 kDa poly(ADP-ribose)polymerase (PARP) was cleaved to an 85 kDa fragment indicative of cells undergoing apoptosis. The earliest cleaved PARP appears at 24 hr time point followed by elevated levels of 85 kDa fragment at 34 hr and 48 hr time points when the cells were exposed to continuous treatment with MSC. Results also showed that MSC increased caspase-3 activity at 24 hr time point. In addition, continuous treatment with MSC induced DNA fragmentation at 34 hr and 48 hr time points with caspase-3 gene expression moderately increased at 16 hr and 24 hr time points. Caspase-6 and -8 were also involved in the MSC-induced apoptosis but to a lesser extent. These results suggest that MSC mediates cleavage of PARP and apoptosis by activating one or more caspases in synchronized TM6 cells and the events are dependent on the duration of treatment.  相似文献   

7.
Poly(ADP-ribosyl)ation is a posttranslational modification that alters the functions of the acceptor proteins and is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes. Following DNA damage, activated poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the elongation and branching of poly(ADP-ribose) (pADPr) covalently attached to nuclear target proteins. Although the biological role of poly(ADP-ribosyl)ation has not yet been defined, it has been implicated in many important cellular processes such as DNA repair and replication, modulation of chromatin structure, and apoptosis. The transient nature and modulation of poly(ADP-ribosyl)ation depend on the activity of a unique cytoplasmic enzyme called poly(ADP-ribose) glycohydrolase which hydrolyzes pADPr bound to acceptor proteins in free ADP-ribose residues. While the PARP homologues have been recently reviewed, there are relatively scarce data about PARG in the literature. Here we summarize the latest advances in the PARG field, addressing the question of its putative nucleo-cytoplasmic shuttling that could enable the tight regulation of pADPr metabolism. This would contribute to the elucidation of the biological significance of poly(ADP-ribosyl)ation.  相似文献   

8.
Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutation into the cleavage site (DEVD) of PARP that renders the protein resistant to caspase cleavage in vitro and in vivo. Here, we show that after treatment with tumor necrosis factor alpha, fibroblasts expressing this caspase-resistant PARP exhibited an accelerated cell death. This enhanced cell death is attributable to the induction of necrosis and an increased apoptosis and was coupled with depletion of NAD+ and ATP that occurred only in cells expressing caspase-resistant PARP. The PARP inhibitor 3-aminobenzamide prevented the NAD+ drop and concomitantly inhibited necrosis and the elevated apoptosis. These data indicate that this accelerated cell death is due to NAD+ depletion, a mechanism known to kill various cell types, caused by activation of uncleaved PARP after DNA fragmentation. The present study demonstrates that PARP cleavage prevents induction of necrosis during apoptosis and ensures appropriate execution of caspase-mediated programmed cell death.  相似文献   

9.
Poly(ADP-ribose) glycohydrolase (PARG) is responsible for the catabolism of poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerase (PARP-1) and other PARP-1-like enzymes. In this work, we report that PARG is cleaved during etoposide-, staurosporine-, and Fas-induced apoptosis in human cells. This cleavage is concomitant with PARP-1 processing and generates two C-terminal fragments of 85 and 74 kDa. In vitro cleavage assays using apoptotic cell extracts showed that a protease of the caspase family is responsible for PARG processing. A complete inhibition of this cleavage was achieved at nanomolar concentrations of the caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde, suggesting the involvement of caspase-3-like proteases. Consistently, recombinant caspase-3 efficiently cleaved PARG in vitro, suggesting the involvement of this protease in PARG processing in vivo. Furthermore, caspase-3-deficient MCF-7 cells did not show any PARG cleavage in response to staurosporine treatment. The cleavage sites identified by site-directed mutagenesis are DEID(256) downward arrow V and the unconventional site MDVD(307) downward arrow N. Kinetic studies have shown similar maximal velocity (V(max)) and affinity (K(m)) for both full-length PARG and its apoptotic fragments, suggesting that caspase-3 may affect PARG function without altering its enzymatic activity. The early cleavage of both PARP-1 and PARG by caspases during apoptosis suggests an important function for poly(ADP-ribose) metabolism regulation during this cell death process.  相似文献   

10.
Apoptosis is characterized by the proteolytic cleavage of hundreds of proteins. One of them, the type 1 inositol-1,4,5-trisphosphate receptor (IP(3) R-1), a multimeric receptor located on the endoplasmic reticulum (ER) membrane that is critical to calcium homeostasis, was reported to be cleaved during staurosporine (STS) induced-apoptosis in Jurkat cells. Because the reported cleavage site separates the IP(3) binding site from the channel moiety, its cleavage would shut down a critical signaling pathway that is common to several cellular processes. Here we show that IP(3) R-1 is not cleaved in 293 cells treated with STS, TNFα, Trail, or ultra-violet (UV) irradiation. Further, it is not cleaved in Hela or Jurkat cells induced to undergo apoptosis with Trail, TNFα, or UV. In accordance with previous reports, we demonstrate that it is cleaved in a Jurkat cell line treated with STS. However its cleavage occurs only after poly(ADP-ribose) polymerase (PARP), which cleavage is a hallmark of apoptosis, and p23, a poor caspase-7 substrate, are completely cleaved, suggesting that IP(3) R-1 is a relatively late substrate of caspases. Nevertheless, the receptor is fully accessible to proteolysis in cellulo by ectopically overexpressed caspase-7 or by the tobacco etch virus (TEV) protease. Finally, using recombinant caspase-3 and microsomal fractions enriched in IP(3) R-1, we show that the receptor is a poor caspase-3 substrate. Consequently, we conclude that IP(3) R-1 is not a key death substrate.  相似文献   

11.
PARP1是真核细胞内具有多聚腺苷酸二磷酸核糖基(PAR)催化活性的蛋白酶,目前发现18个具有该活性的蛋白.多聚腺苷酸二磷酸核糖基化反应是细胞内进行的翻译后修饰,该修饰作用于许多蛋白,涉及到染色体的稳定,DNA损伤修复,基因转录,细胞的增长,死亡和凋亡等方面.在生理病理方面与炎症,肿瘤,衰老等疾病相关联.本文针对以上方面进行了总结和讨论.  相似文献   

12.
13.
14.
Caspases have been implicated in the induction of apoptosis in most systems studied. The importance of caspases for apoptosis was further investigated using the system of didemnin B-induced apoptosis. We found that benzyloxycarbonyl-VAD-fluoromethylketone, a general caspase inhibitor, inhibits didemnin B-induced apoptosis in HL-60 and Daudi cells. Acetyl-YVAD-chloromethylketone, a caspase-1-like activity inhibitor, inhibits didemnin B-induced apoptosis in Daudi cells, whereas the caspase-3-like activity inhibitor, acetyl-DEVD-aldehyde, has no effect. Using immunoblots to investigate cleavage of caspases-1 and -3, we found that both caspases are activated in both cell lines. We showed that the caspase substrate poly(ADP-ribose)polymerase is cleaved in these cells after didemnin B treatment. In both cell lines, poly(ADP-ribose)polymerase cleavage is inhibited by benzyloxycarbonyl-VAD-fluoromethylketone and also by acetyl-YVAD-chloromethylketone in Daudi cells. These results indicate that a caspase(s) other than caspase-3 is required for didemnin B-induced apoptosis. We show that caspases may be activated during apoptosis that are not required for the progression of apoptosis.  相似文献   

15.
In Jurkat cells Bid was cleaved upon activation of the Fas receptor with an anti-Fas antibody. The caspase-8 inhibitor benzyloxycarbonyl-Ile-Glu(OMe)-Thr-Asp(OMe)-CH(2)F (IETD) prevented the cleavage of Bid and the loss of viability. The nuclear enzyme poly(ADP-ribose)polymerase (PARP) was also cleaved upon the activation of caspases, and IETD similarly prevented PARP cleavage. The PARP inhibitor 3-aminobenzamide (3-AB) restored the cell killing in the presence of IETD, an effect that occurred without restoration of the cleavage of Bid or PARP. In the presence of 3-AB and IETD, translocation occurred of full-length Bid to the mitochondria. The induction of the mitochondrial permeability transition (MPT) was documented by the cyclosporin A (CyA) sensitivity of the release of cytochrome c, the release of malate dehydrogenase from the mitochondrial matrix, the loss of the mitochondrial membrane potential, and the pronounced swelling of these organelles, as assessed by electron microscopy. In addition to preventing all evidence of the MPT, CyA prevented the loss of cell viability, without effect on the cleavage of either Bid or PARP. The prevention of PARP cleavage by inhibition of caspase-3 resulted in a 10-fold activation of the enzyme and a resultant depletion of NAD and ATP. The PARP inhibitor 3-AB prevented the loss of NAD and ATP. Depletion of ATP by metabolic inhibitors similarly prevented the cell killing. It is concluded that the cleaving of PARP in Fas-mediated apoptosis allowed expression of an energy-dependent cell death program that included the translocation of full-length Bid to the mitochondria with induction of the MPT.  相似文献   

16.
Goniothalamin, a plant styrylpyrone derivative isolated from Goniothalamus andersonii, induced apoptosis in Jurkat T-cells as assessed by the externalisation of phosphatidylserine. Immunoblotting showed processing of caspases-3 and -7 with the appearance of their catalytically active large subunits of 17 and 19 kDa, respectively. Activation of these caspases was further evidenced by detection of poly(ADP-ribose) polymerase cleavage (PARP). Pre-treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked apoptosis and the resultant cleavage of these caspases and PARP. Our results demonstrate that activation of at least two effector caspases is a key feature of goniothalamin-induced apoptosis in Jurkat T-cells.  相似文献   

17.
It has been shown that Fructus Ligustri Lucidi (FLL), a promising traditional Chinese medicine, can inhibit the growth of tumors. However, the effective component and molecular mechanism of FLL act to inhibit tumor proliferation are unclear. In this study, we demonstrated that oleanolic acid (OA), a principal chemical component of FLL, inhibited the proliferation of human leukemia HL60 cells in culture. MTT assay showed that treatment of HL60 cells with FLL crude extracts or OA dramatically blocked the growth of target tumor cell in a time- and dose-dependent manner. Morphological changes of the nuclei and DNA fragmentation showed that apoptotic cell death occurred in the HL60 cells after treating with FLL extracts (20 mg/ml) or OA (3.65×10^-2 mg/ml). Furthermore, flow cytometry assay showed that treatment of HL60 cells with FLL or OA caused an increased accumulation of G1 and sub-G1 subpopulations. Western blot analysis showed that caspase-9 and caspase-3 were activated, accompanied by the cleavage of poly (ADP-ribose) polymerase (PARP) in the target cells during FLL- or OA-induced apoptosis, These results suggest that OA acts as the effective component of FLL by exerting its cytotoxicity towards target tumor cells through activation of caspases and cleavage of PARP.  相似文献   

18.
猕猴脑胱天蛋白酶-3活化及其靶蛋白的体外研究(英)   总被引:1,自引:1,他引:0  
凋亡的主要生化过程包括胱天蛋白酶的活化及其对细胞内蛋白质的选择性切割.在已知的胱天蛋白酶中,可被多种凋亡刺激信号激活的胱天蛋白酶-3备受注目.为进一步揭示灵长类动物神经组织中未知的胱天蛋白酶-3靶蛋白,采用成年猕猴脑组织粗提物作为无细胞体系,通过加入granzyme B引发凋亡途径的部分反应,如胱天蛋白酶-3的活化及随后发生的蛋白质水解.经蛋白质印迹分析发现,与granzyme B共孵育后,猕猴脑胱天蛋白酶-3以两步方式从酶原转化为活性酶.对猕猴脑组织自身蛋白质的进一步分析显示,多聚ADP-核糖聚合酶(PARP)被水解为长85 ku的片段,此片段提示胱天蛋白酶-3的特异切割活性.此外,神经元凋亡抑制蛋白(NAIP)也被切割,产生长约40 ku的小片段,但是它的出现不被胱天蛋白酶-3特异性抑制剂Ac-DEVD-CHO阻断,因此可能是granzyme B直接作用于NAIP所致.以上结果提示,凋亡相关酶切反应可在成年猕猴脑组织提取物中得到重现;NAIP可能是granzyme B而非胱天蛋白酶-3的作用靶点.  相似文献   

19.
凋亡的主要生化过程包括胱天蛋白酶的活化及其对细胞内蛋白质的选择性切割.在已知的胱天蛋白酶中,可被多种凋亡刺激信号激活的胱天蛋白酶-3备受注目.为进一步揭示灵长类动物神经组织中未知的胱天蛋白酶-3靶蛋白,采用成年猕猴脑组织粗提物作为无细胞体系,通过加入granzyme B引发凋亡途径的部分反应,如胱天蛋白酶-3的活化及随后发生的蛋白质水解.经蛋白质印迹分析发现,与granzyme B共孵育后,猕猴脑胱天蛋白酶-3以两步方式从酶原转化为活性酶.对猕猴脑组织自身蛋白质的进一步分析显示,多聚ADP-核糖聚合酶(PARP)被水解为长85 ku的片段,此片段提示胱天蛋白酶-3的特异切割活性.此外,神经元凋亡抑制蛋白(NAIP)也被切割,产生长约40 ku的小片段,但是它的出现不被胱天蛋白酶-3特异性抑制剂Ac-DEVD-CHO阻断,因此可能是granzyme B直接作用于NAIP所致.以上结果提示,凋亡相关酶切反应可在成年猕猴脑组织提取物中得到重现;NAIP可能是granzyme B而非胱天蛋白酶-3的作用靶点.  相似文献   

20.
Nitric oxide (NO) may block apoptosis by inhibiting caspases via S-nitrosylation of cysteines. Here, we investigated whether effector caspases might cleave and thereby inhibit endothelial nitric oxide synthase (eNOS). Exposure of eNOS-transfected COS-7 cells and bovine aortic endothelial cells to staurosporine resulted in significant loss of 135-kDa eNOS protein and activity, and appearance of a 60-kDa eNOS fragment; effects were inhibited by the general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp[OMe]-fluoromethyl ketone (zVAD-fmk). In eNOS-transfected COS-7 cells, staurosporine-induced activation of caspase-3 and poly(ADP-ribose) polymerase (PARP) cleavage coincided with increased eNOS degradation and decreased activity. Loss of eNOS activity was greater than the degree of proteolysis. Incubation of immunoprecipitated eNOS with caspase-3, caspase-6 or caspase-7 resulted in eNOS cleavage. Staurosporine, a general protein kinase inhibitor, also reduced phosphorylation and decreased calmodulin binding, an effect that may explain the reduction in activity. eNOS, therefore, is both an inhibitor of apoptosis and a target of apoptosis-associated proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号