首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A possibility was shown of purification of the concentrated toxoids of the Cl. perfringens and Cl. oedematiens species in examination of KSK-2, KSK-2,5; MCA-2 silicagels. The specific activity of the preparations obtained and the yield approached the analogous indices obtained in stratification of Sephadex G-75. The effect of preliminary silicagel treatment and also of the nature of buffer solutions on the efficacy of the process of purification of the gangrenous toxoids was established.  相似文献   

3.
Clostridium perfringens cells were cultivated on a large scale using an automatic system. Neuraminidase secreted by the cells into the culture medium was purified 380 000-fold by: precipitation with ammonium sulfate between 50 and 85% saturation, filtration on Sephadex G-75, electrophoresis on polyacrylamide gel, and by isoelectric focusing. Three enzyme fractions with different migration rates were obtained by preparative disc electrophoresis in polyacrylamide gel, and five fractions with isoelectric points between pH 4.7 and 5.4 were observed after isoelectric focusing. This microheterogeneity disappeared after denaturation of the enzyme in 0.1% sodium dodecylsulfate or 8M urea. The isoelectric point of the denatured enzyme corresponded to pH 4.3. All enzyme fractions were identical with regard to their immunological and kinetic properties; they had the same molecular weights. The origin of the different "conformers" of neuraminidase is discussed. The existence of genuine isoenzymes could largely be excluded. The yield of neuraminidase was 65%, which corresponded to about 10 mg of pure enzyme from 100 l of culture medium. The enzyme was free of protease and various other glycosidase activities. The neuraminidase preparation appeared not to be contaminated by other proteins as judged by electrophoretic analysis using either the native enzyme or the enzyme denatured by sodium dodecylsulfate or urea; ultracentrifugation; chromatography on Sephadex G-200; and immunological methods. The molecular weights of the native or denatured enzyme were found to be in the range between 60 000 and 69 000 (on an average 63 750) using four independent methods. The existence of subunits of neuraminidase was excluded. The neuraminidase exhibited a spec. act. of 580 or 615 U/mg protein with glycopeptides from edible birds' nests or sialyllactose, respectively, as substrates. Additional kinetic properties and the UV-absorption spectrum of the enzyme are described.  相似文献   

4.
5.
Theta-Toxin, an oxygen-labile hemolysin produced by Clostridium perfringens, was purified 3300 fold from culture filtrate by successive chromatography on DEAE-Sephadex A-50 and Sephadex G-150. The purified toxin gave two distinct bands in disc electrophoresis, while the same material, after mild reduction with dithiothreitol, yielded a single band, indicating that the purified theta-toxin contained, as well as a reduced, active form, an oxidized, inactive form of toxin. These two forms of the toxin had a similar, if not identical molecular size. The purified preparation gave a single band in a sodium dodecyl sulfate polyacrylamide gel electrophoresis and formed a single precipitin line with National Standard gas gangrene (C. perfringens) antitoxin. By sodium dodecyl sulfate polyacrylamide gel electrophoresis, the molecular weight of theta-toxin was estimated to be 51 000, the value being in exact accordance with that obtained by amino acid analysis. The amino acid composition of theta-toxin was very close to that of cereolysin, an oxygen-labile hemolysin produced by Bacillus cereus. The amino-terminal residue of theta-toxin was lysine as determined by the Dansyl method.  相似文献   

6.
Proline reductase of Clostridium sticklandii is a membrane-bound protein and is released by treatment with detergents. The enzyme has been purified to homogeneity and is estimated by gel filtration and sedimentation equilibrium centrifugation to have a molecular weight of 298,000 to 327,000. A minimum molecular weight of 30,000 to 31,000 was calculated on the basis of sodium dodecyl sulfate-acrylamide gel electrophoresis and amino acid composition. Amino acid analysis showed a preponderance of acidic amino acids. No tryptophan was detected in the protein either spectrophotometrically or by amino acid analysis. A total of 20 sulfhydryl groups measured by titration of the reduced protein with 5,5'-dithiobis(2-nitrobenzoic acid) is in agreement with 20 cystic acid residues determined in hydrolysates of performic acid-oxidized protein. No molybdenum, iron, or selenium was found in the pure protein. Although NADH is the physiological electron donor for the proline reductase complex, the purified 300,000 molecular weight reductase component is inactive in the presence of NADH in vitro. Dithiothreitol, in contrast, can serve as electron donor both for unpurified (putative proline reductase complex) and purified proline reductase in vitro.  相似文献   

7.
Clostridium perfringens cells were cultivated on a large scale using an automatic system. 2) N-Acetylneuraminate lyase, which is a cytosolic enzyme, was liberated from the bacteria by cell lysis using lysozyme in hypotonic solution. The enzyme was purified 770-fold by precepitation with ammonium sulfate, filtration on Sephadex A-50 and final preparative electrophoresis in a 7.5% polyacrylamide gel. Yield: 12 mg from 1 kg wet cell paste; specific activity: 167 nkat/mg protein. 3) The enzyme preparation appeared homogeneous in analytical disc electrophoresis, in gel electrophroesis in 0.1% sodium dodecylsulfate or 8m urea and in immunoelectrophoresis. Contaminating enzyme activities were not detected. 4) The isoelectric point of pH 4.7 was found for the enzyme. At 278 nm a molar extinction coefficient of 6.4 x 10(4)M-1 Xcm-1 was determined. The enzyme exhibited a Km value for N-acetylneuraminic acid of 2.8mM at its pH optimum of pH 7.2. The pH dependence of the Km value gives evidence that an ionizing guoup in the active center of the enzyme with a pKe value of 6.4 may be involved in the catalytic reaction. Pyruvate inhibited the cleavage reaction of N-acetylneuraminic acid competitively; Ki = 2.9mM. 5) An average molecular weight of 99200 was determined for the native enzyme using different methods. After denaturation in sokium dodecylsulfate or urea, a mean molecular weight of only 50000 could be demonstrated, indicating the existence of two enzyme subunits. The lyase molecule was shown by electron microscopy, using a negative staining technique, to consist of two hemispherical parts. 6) Two active sites per native enzyme molecule, probably corresponding to one active site per subunit, were found by incubation of the enzyme with radioactive pyruvate followed by borohydride reduction. The results obtained from chemical modification of the lyase with 5-diazonium-1H-tetrazole and iodocaetamide under various conditionsare interpreted as evidence for the presence of two reactive histidine residues in the enzyme molecule. It is probable that one residue per subunit forms the nucleophilic group participating in enzyme catalysis. A model suggesting the mechanism of reversible cleavage of N-acylneuraminic acids by the lyase is presented.  相似文献   

8.
9.
10.
We have found a novel enzyme that decomposes D-selenocystine into pyruvate, ammonia, and elemental selenium in extracts of Clostridium sticklandii and C. sporogenes. The enzyme of C. sticklandii has been purified to homogeneity. It has a molecular weight of 74,000 and consists of two subunits identical in molecular weight (35,000). Pyridoxal 5'-phosphate is required as a cofactor. In addition to D-selenocystine, D-cystine, D-lanthionine, meso-lanthionine, and D-cysteine serve as substrates. However, D-selenocysteine, D-serine, DL-selenohomocystine, and L-amino acids are inert. The enzyme also catalyzes the beta-replacement reaction between D-selenocystine and a thiol to produce S-substituted D-cysteine. L-Selenohomocysteine also can serve as a substituent donor in the beta-replacement reaction to yield selenocystathionine.  相似文献   

11.
We purified a novel ADP-ribosyltransferase produced by a Clostridium limosum strain isolated from a lung abscess and compared the exoenzyme with Clostridium botulinum ADP-ribosyltransferase C3. The C. limosum exoenzyme has a molecular weight of about 25,000 and a pI of 10.3. The specific activity of the ADP-ribosyltransferase is 3.1 nmol/mg/min with a Km for NAD of 0.3 microM. Partial amino acid sequence analysis of the tryptic peptides revealed about 70% homology with C3. The novel exoenzyme modifies selectively the small GTP-binding proteins of the rho family in human platelet membranes presumably at the same amino acid (asparagine 41) as known for C3. Recombinant rhoA and rhoB serve as substrates for C3 and the C. limosum exoenzyme. Whereas recombinant rac1 protein is only marginally ADP-ribosylated by C3 or by the C. limosum exoenzyme in the absence of detergent, in the presence of 0.01% sodium dodecyl sulfate rac1 is modified by C3 but not by the C. limosum exoenzyme. Recombinant CDC42Hs protein is a poor substrate for C. limosum exoenzyme and is even less modified by C3. The C. limosum exoenzyme is auto-ADP-ribosylated in the presence of 0.01% sodium dodecyl sulfate by forming an ADP-ribose protein bond highly stable toward hydroxylamine. The data indicate that ADP-ribosylation of small GTP-binding proteins of the rho family is not unique to C. botulinum C3 ADP-ribosyltransferase but is also catalyzed by a C3-related exoenzyme from C. limosum.  相似文献   

12.
13.
A new purification procedure involving five column-chromatography steps is described for dihydro-orotase (L-5,6-dihydro-orotate amidohydrolase, EC 3.5.2.3) from Clostridium oroticum (A.T.C.C. 25750). The native purified enzyme is a dimer of Mr 102 000 and contains 4.0 +/- 0.3 g-atoms of zinc/mol of dimer. These observations agree with those reported previously [Taylor, Taylor, Balch & Gilchrist (1976) J. Bacteriol. 127, 863-873]. It is conclusively demonstrated that dihydro-orotase is a zinc metalloenzyme. Zinc is reversibly removed by treatment with chelators in phosphate buffer at pH 6.5, as demonstrated by atomic absorption spectrophotometry and decrease of enzyme activity. The specific activity is linearly dependent on zinc content. Addition of ZnSO4 to the chelator-treated enzyme results in regain of the normal complement of zinc and enzyme activity. Kinetic properties of the reconstituted enzyme are indistinguishable from those of the native enzyme. The amino acid composition of the homogeneous enzyme suggests that the zinc atoms occupy different environments.  相似文献   

14.
Cattle enterotoxemia caused by Clostridium perfringens toxins is a noncontagious, sporadic, and fatal disease characterized by sudden death. Strategies for controlling and preventing cattle enterotoxemia are based on systematic vaccination of herds with toxoids. Because the process of producing conventional clostridial vaccines is dangerous, expensive, and time‐consuming, the prospect of recombinant toxoid vaccines against diseases caused by C. perfringens toxins is promising. In this study, nontoxic recombinant toxoids derived from α‐, β‐ and ε‐toxins of C. perfringens, namely, rCPA247–370, rCPB and rEtxHP, respectively, were expressed in Escherichia coli. High levels of specific IgG antibodies and neutralizing antibodies against the toxins were detected in sera from calves vaccinated with either a single recombinant toxoid or a mixed cocktail of all three recombinant toxoids, indicating the potential of these recombinant toxoids to provide calves with protective immunity against enterotoxemia caused by C. perfringens.  相似文献   

15.
The F1 portion of the H+-ATPase from Clostridium thermoaceticum was purified to homogeneity by solubilization at low ionic strength, ion-exchange chromatography, and gel filtration. The last indicated the Mr to be 370,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the pure enzyme revealed four bands with Mr corresponding to 60,000, 55,000, 37,000, and 17,000 in an apparent molar ratio of 3:3:1:1. The purified enzyme would bind to stripped membranes to reconstitute dicyclohexylcarbodiimide-sensitive ATPase activity. Phosphohydrolase activity, measured at 58 degrees C, was optimal at pH 8.5. In the presence of a 1 mM excess of Mg2+ over the concentration of ATP, the Km for ATP was 0.4 mM, and the Vmax was 6.7 mumol min-1 mg-1. Unlike the membrane-bound F1F0 complex, the F1-ATPase was relatively insensitive to the inhibitors dicyclohexylcarbodiimide and tributyltin chloride. Both the complex and the F1-ATPase were inhibited by quercetin, azide, 7-chloro-4-nitro-benz-2-oxa-1,3-diazole, and free magnesium, and both were stimulated by primary alcohols and sulfite. In whole cells, the F1F0-ATPase catalyzed the synthesis of ATP in response to a pH gradient.  相似文献   

16.
Clostridium propionicum converts lactate to propionate (Cardon, B.P., and Barker, H.A. (1947) Arch. Biochem. Biophys. 12, 165-171). We have obtained a soluble system that carries out this conversion as well as the hydration of acrylate to lactate and the reduction of acrylate to propionate. 3-Pentynyl-CoA inhibits reduction of acrylate and lactate to propionate, but not hydration of acrylate to lactate by cell extracts. The conversion probably involves CoA esters. When [beta-2H3] lactate is used as a substrate, the rate of propionate formation is reduced 1.8-fold, and the methyl group of the resulting propionate has lost 1.4 deuterium atoms. These results are consistent with the intermediate formation of acrylate (acrylyl-CoA) in the conversion of D-lactate to propionate. Two proteins, which we designate E I and E II, were purified to greater than 90% homogeneity. Together, they catalyze the hydration of acrylyl-CoA to lactyl-CoA. E I has an apparent molecular mass of 27,000 daltons and is rapidly and irreversibly inactivated by O2. E II consists of two subunits of molecular mass 41,000 and 48,000 daltons and contains equal amounts of riboflavin and flavin mononucleotide. Hydration of acrylyl-CoA to lactyl-CoA requires Mg2+ and catalytic quantities of ATP. GTP can replace ATP, but ADP and adenylyl imidodiphosphate cannot. We were unable to detect any stable intermediate during acrylyl-CoA hydration. Finally, we proposed a mechanism for this reaction.  相似文献   

17.
A Pich  H Bahl 《Journal of bacteriology》1991,173(6):2120-2124
The DNA-dependent RNA polymerase (EC 2.7.7.6) from Clostridium acetobutylicum DSM 1731 has been purified to homogeneity and characterized. The purified enzyme was composed of four subunits and had a molecular mass of 370,000 Da. Western immunoblot analysis with polyclonal antibodies against the sigma 70 subunit of Escherichia coli RNA polymerase identified the 46,000-Da subunit as an immunologically and probably functionally related protein. The other three subunits of 128,000, 117,000, and 42,000 Da are tentatively analogous to the beta, beta', and alpha subunits, respectively, of other eubacterial RNA polymerases. The RNA polymerase activity was completely dependent on Mg2+, nucleoside triphosphates, and a DNA template. The presence of Mg2+ or Mn2+ in buffers used for purification or storage caused irreversible inactivation of the RNA polymerase.  相似文献   

18.
An enzyme active against carboxymethyl cellulose (CMC) was purified from the stationary-phase-culture supernatant of Clostridium josui grown in a medium containing ball-milled cellulose. The purification in the presence of 6 M urea yielded homogeneous enzyme after an approximately 50-fold increase in specific activity and a 13% yield. The enzyme had a molecular mass of 45 kilodaltons. The optimal temperature and pH of the enzyme against CMC were 60 degrees C and 6.8, respectively. The enzyme hydrolyzed cellotetraose, cellopentaose, and cellohexaose to cellobiose and cellotriose but did not hydrolyze cellobiose or cellotriose. A microcrystalline cellulose, Avicel, was also hydrolyzed significantly, but the extent of hydrolysis was remarkably less than that of CMC. On the basis of these results, the enzyme purified here is one of the endo-1,4-beta-glucanases. The N-terminal amino acid sequence of the enzyme is Tyr-Asp-Ala-Ser-Leu-Lys-Pro-Asn-Leu-Gln-Ile-Pro-Gln-Lys-Asn-Ile-Pro-Asn- Asn-Asp-Ala-Val-Asn-Ile-Lys.  相似文献   

19.
The purification to homogeneity of the non-heme iron protein, sometimes referred to as either "red protein" or "paramagnetic protein", from Clostridium pasteurianum W5 extracts is described and its physicochemical properties studied. This paramagnetic protein (g= 1.94) has a molecular weight of about 25000 and contains two iron and two acid-labile sulfur atoms per mol of protein. Its midpoint potential at pH 7.5, as determined by electron paramagnetic resonance titration, is -300 mV. Optical circular dichroism and electron paramagnetic resonance spectra of the paramagnetic protein are similar to those of two iron-two acid-labile sulfur ferredoxins. The biochemical reduction of the purified protein was also studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号