首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Chlamydiae are obligate intracellular pathogens that spend their entire growth phase sequestered in a membrane-bound vacuole called an inclusion. A set of chlamydial proteins, labelled Inc proteins, has been identified in the inclusion membrane (IM). The predicted IncA, IncB and IncC amino acid sequences share very limited similarity, but a common hydrophobicity motif is present within each Inc protein. In an effort to identify a relatively complete catalogue of Chlamydia trachomatis proteins present in the IM of infected cells, we have screened the genome for open reading frames encoding this structural motif. Hydropathy plot analysis was used to screen each translated open reading frame in the C. trachomatis genome database. Forty-six candidate IM proteins (C-lncs) that satisfied the criteria of containing a bilobed hydrophobic domain of at least 50 amino acids were identified. The genome of Chlamydia pneumoniae encodes a larger collection of C-lnc proteins, and only approximately half of the C-lncs are encoded within both genomes. In order to confirm the hydropathy plot screening method as a valid predictor of C-lncs, antisera and/or monoclonal antibodies were prepared against six of the C. trachomatis C-lncs. Immunofluorescence microscopy of C. trachomatis-infected cells probed with these antibodies showed that five out of six C-lncs are present in the chlamydial IM. Antisera were also produced against C. pneumoniae p186, a protein sharing identity with Chlamydia psittaci lncA and carrying a similar bilobed hydrophobic domain. These antisera labelled the inclusion membrane in C. pneumoniae infected cells, confirming that proteins sharing the unique secondary structural characteristic also localize to the inclusion membrane of C. pneumoniae. Sera from patients with high-titre antibodies to C. trachomatis were examined for reactivity with each tested C-lnc protein. Three out of six tested C-lncs were recognized by a majority of these patient sera. Collectively, these studies identify and characterize novel proteins localized to the chlamydial IM and demonstrate the existence of a potential secondary structural targeting motif for localization of chlamydial proteins to this unique intracellular environment.  相似文献   

3.
Chlamydiae are obligate intracellular bacteria that replicate within a non-acidified vacuole called an inclusion. Chlamydia psittaci (strain GPIC) produces a 39 kDa protein (IncA) that is localized to the inclusion membrane. While IncA is present as a single 39 kDa species in purified reticulate bodies, two additional higher M r forms are found in C. psittaci -infected cells. This finding suggested that IncA may be post-translationally modified in the host cell. Here we present evidence that IncA is a serine/threonine phosphoprotein that is phosphorylated by host cell enzymes. This conclusion is supported by the following experimental findings: (i) treatment of infected cells with inhibitors of host cell phosphatases or kinases altered the electrophoretic migration pattern of IncA; (ii) treatment with calf intestinal alkaline phosphatase eliminated the multiple-banding pattern of IncA, leaving only the protein band with the lowest relative molecular weight; and (iii) radioimmunoprecipitation of lysates of [32P]-orthophosphate-labelled infected HeLa cells with anti-IncA antisera demonstrated that the two highest M r IncA bands were phosphorylated. A vaccinia-virus recombinant expressing incA was used to determine if HeLa cells can phosphorylate IncA in the absence of a chlamydial background. IncA in lysates of these cells migrated identically to that seen in C. psittaci -infected cells, indicating the host cell was responsible for the phosphorylation of the protein. Microinjection of fluorescently labelled anti-IncA antibodies into C. psittaci -infected HeLa cells resulted in immunostaining of the outer face of the inclusion membrane. Collectively, these results demonstrate that IncA is phosphorylated by the host cell, and regions of IncA are exposed at the cytoplasmic face of the inclusion.  相似文献   

4.
The developmental cycle of Chlamydiaceae occurs in a membrane compartment called an inclusion. IncA is a member of a family of proteins synthesized and secreted onto the inclusion membrane by bacteria. IncA proteins from different species of Chlamydiaceae show little sequence similarity. We report that the biochemical properties of Chlamydia trachomatis and Chlamydia caviae are conserved. Both proteins self-associate to form multimers. When artificially expressed by the host cell, they localize to the endoplasmic reticulum. Strikingly, heterologous expression of IncA in the endoplasmic reticulum completely inhibits concomitant inclusion development. Using truncated forms of IncA from C. caviae, we show that expression of the C-terminal cytoplasmic domain of the protein at the surface of the endoplasmic reticulum is sufficient to disrupt the bacterial developmental cycle. On the other hand, development of a C. trachomatis strain that does not express IncA is not inhibited by artificial IncA expression, showing that the disruptive effect observed with the wild-type strain requires direct interactions between IncA molecules at the inclusion and on the endoplasmic reticulum. Finally, we modeled IncA tetramers in parallel four helix bundles based on the structure of the SNARE complex, a conserved structure involved in membrane fusion in eukaryotic cells. Both C. trachomatis and C. caviae IncA tetramers were highly stable in this model. In conclusion, we show that the property of IncA proteins to assemble into multimeric structures is conserved between chlamydial species, and we propose that these proteins may have co-evolved with the SNARE machinery for a role in membrane fusion.  相似文献   

5.
6.
Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A) appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA’s fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.  相似文献   

7.
Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation.  相似文献   

8.
Chlamydiae replicate intracellularly within a vacuole that is modified early in infection to become fusogenic with a subset of exocytic vesicles. We have recently identified four chlamydial inclusion membrane proteins, IncD-G, whose expression is detected within the first 2 h after internalization. To gain a better understanding of how these Inc proteins function, a yeast two-hybrid screen was employed to identify interacting host proteins. One protein, 14-3-3beta, was identified that interacted specifically with IncG. The interaction between 14-3-3beta and IncG was confirmed in infected HeLa cells by indirect immunofluorescence microscopy and interaction with a GFP-14-3-3beta fusion protein. 14-3-3 proteins are phosphoserine-binding proteins. Immunoprecipitation studies with [32P]-orthophosphate-labelled cells demonstrated that IncG is phosphorylated in both chlamydia-infected HeLa cells and in yeast cells expressing IncG. Site-directed mutagenesis of predicted 14-3-3 phosphorylation sites demonstrated that IncG binds to 14-3-3beta via a conserved 14-3-3-binding motif (RS164RS166F). Finally, indirect immunofluorescence demonstrated that 14-3-3beta interacts with Chlamydia trachomatis inclusions but not C. psittaci or C. pneumoniae inclusions. 14-3-3beta is the first eukaryotic protein found to interact with the chlamydial inclusion; however, its unique role in C. trachomatis pathogenesis remains to be determined.  相似文献   

9.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

10.
Chlamydia trachomatis acquires C6-NBD-sphingomyelin endogenously synthesized from C6-NBD-ceramide and transported to the vesicle (inclusion) in which they multiply. Here we explore the mechanisms of this unusual trafficking and further characterize the association of the chlamydial inclusion with the Golgi apparatus. Endocytosed chlamydiae are trafficked to the Golgi region and begin to acquire sphingolipids from the host within a few hours following infection. The transport of NBD-sphingolipid to the inclusion is energy- and temperature-dependent with the characteristics of an active, vesicle-mediated process. Photo-oxidation of C5-DMB-ceramide, in the presence of diaminobenzidine, identified DMB-lipids in vesicles in the process of fusing to the chlamydial inclusion membrane. C6-NBD-sphingomyelin incorporated into the plasma membrane is not trafficked to the inclusion to a significant degree, suggesting the pathway for sphingomyelin trafficking is direct from the Golgi apparatus to the chlamydial inclusion. Lectins and antibody probes for Golgi-specific glycoproteins demonstrate the close association of the chlamydial inclusion with the Golgi apparatus but do not detect these markers in the inclusion membrane. Collectively, the data are consistent with a model in which C.trachomatis inhabits a unique vesicle which interrupts an exocytic pathway to intercept host sphingolipids in transit from the Golgi apparatus to the plasma membrane.  相似文献   

11.
沙眼衣原体CT-249基因编码蛋白为一包涵体膜蛋白   总被引:2,自引:0,他引:2  
使用融合蛋白GST-CT249的抗体对假想蛋白CT249的特性进行研究。使用PCR方法从L2型沙眼衣原体的基因组中扩增编码CT249蛋白的开放读码区基因,限制性内切酶BamHⅠ和NotⅠ消化、T4连接酶连接导入pGEX-6p2载体,进一步把重组质粒pGEX-6p2-CT249转化到XL1-blue细菌,并诱导表达融合蛋白GST-CT249。在融合蛋白GST-CT249免疫小鼠制备抗体后,应用直接免疫荧光技术对衣原体感染细胞内的CT249基因表达的内源性蛋白进行初步定位。成功克隆出沙眼衣原体基因CT249,全长为351bp,并表达了融合蛋白GST-CT249,分子量为38.2kDa。制备了融合蛋白GST-CT249的抗体并初步定位假想蛋白CT249于沙眼衣原体包涵体膜蛋白上。总之,使用融合蛋白GST-CT249的抗体,鉴定假想蛋白CT249为一种新的沙眼衣原体包涵体膜蛋白。该发现将为进一步深入研究衣原体与宿主细胞间某些机制提供了有用的途径。  相似文献   

12.
Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.  相似文献   

13.
Abstract Western-blot analysis was used to study the reaction of koala antisera, two specific polyclonal antibodies and one monoclonal antibody, with chlamydial antigens in koalas infected with Chlamydia psittaci . The koala sera recognized four C. psittaci surface antigens, corresponding to the major outer membrane protein (39.5 kDa), 31 kDa protein, 18 kDa protein and lipopolysaccharide. The S25-23 LPS specific monoclonal antibody inhibited chlamydial infection (55–67%) with both koala strains (type I and type II). Both koala antiserum and rabbit polyclonal antibodies against either type of chlamydia significantly reduced the number of infected cells resulting from type II infections at a dilution of 1 in 20. Rabbit antiserum against type II was effective in neutralizing infection by type II elementary bodies, but was less effective against type I infection. In addition, no koala antiserum was effective in neutralizing type I infection.  相似文献   

14.
Chlamydiae are obligate intracellular bacteria which occupy a non-acidified vacuole (the inclusion) throughout their developmental cycle. Little is known about events leading to the establishment and maintenance of the chlamydial inclusion membrane. To identify chlamydial proteins which are unique to the intracellular phase of the life cycle, an expression library of Chlamydia psittaci DNA was screened with convalescent antisera from infected animals and hyperimmune antisera generated against formalin-killed purified chlamydiae. Overlapping genomic clones were identified which expressed a 39 kDa protein only recognized by the convalescent sera. Sequence analysis of the clones identified two open reading frames (ORFs), one of which (ORF1) coded for a predicted 39 kDa gene product. The ORF1 sequence was amplified and fused to the malE gene of Escherichia coli and antisera were raised against the resulting fusion protein. Immunoblotting with these antisera demonstrated that the 39 kDa protein was present in lysates of infected cells and in reticulate bodies (RBs), but was at the limit of detection in lysates of purified C. psittaci elementary bodies. Fluorescence microscopy experiments demonstrated that this protein was localized in the inclusion membrane of infected HeLa cells, but was not detected on the developmental forms within the inclusion. Because the protein produced by ORF1 is deposited on the inclusion membrane of infected cells, this gene has been designated incA, (inc lusion membrane protein A ) and its gene product, IncA. In addition to the inclusion membrane, these antisera labelled structures that extended from the inclusion over the nucleus or into the cytoplasm of infected cells. Immunoblotting also demonstrated that IncA, in lysates of infected cells, had a migration pattern that seemed indicative of post-translational modification. This pattern was not observed in immunoblots of RBs or in the E. coli expressing IncA. Collectively, these data identify a chlamydial gene which codes for a protein that is released from RB and is localized in the inclusion membrane of infected cells.  相似文献   

15.
An understanding of the molecular basis of the humoral immune response to chlamydial infections in man requires the identification of target antigens to which antibodies are directed. The antigenic specificity of antibody from patients with lymphogranuloma venereum (LGV) or trachoma was therefore assessed by Western blotting. Surface polypeptides were first identified using purified chlamydial outer membrane complex as antigen. Antibodies in sera from patients with LGV but not from control negative sera reacted with a wide range of chlamydial surface polypeptides with molecular masses of 19, 29, 41, 58, 63 and 65 kDa. The major component of the antibody response detected by both immunoblotting and immunoprecipitation assay was directed against the major outer membrane protein (MOMP). Antibody to MOMP was species-specific on Western blotting, whereas antibody to several other polypeptides recognized common immunodeterminants on polypeptides of C. psittaci Cal-10 of equivalent molecular mass. Immunologically C. psittaci Cal-10 was more closely related to LGV strains of C. trachomatis than a guinea pig inclusion conjunctivitis strain of C. psittaci. Trachoma sera collected from a village in southern Iran showed predominantly type-specific antibody on micro-immunofluorescence to serotype A or B trachoma agents. These sera showed a weak immune response to MOMP, a pronounced response to a polypeptide of 36 kDa and much less widespread reactivity with other chlamydial polypeptides. The lack of an immune response to SDS-stable immunodeterminants on MOMP might contribute to the susceptibility of trachoma patients to repeated cycles of ocular infection with chlamydiae.  相似文献   

16.
《Cell》1993,72(1):153-159
Proteins that are specifically localized to synaptic vesicles in the nervous system have been proposed to mediate aspects of synaptic transmission. Antibodies raised against the cytoplasmic domains of five of these proteins, vamp, rab3A, synaptophysin, synaptotagmin, and SV2, were used to investigate their function. Microinjection of monoclonal and polyclonal antibodies raised against synaptotagmin (p65), but not the other vesicle proteins, decreases K+/Ca2+-mediated dopamine β-hydroxylase surface staining, a measure of regulated secretion in PC12 cells. Microinjection of a soluble fragment of synaptotagmin encompassing one of the domains homologous to the C2 regulatory region of protein kinase C, but lacking the membrane anchor, also inhibits evoked dopamine β-hydroxylase surface staining. These results provide support for the hypothesis that synaptotagmin, a Ca2+- and phospholipid-binding protein, is important for regulated exocytosis in neurons.  相似文献   

17.
A panel of monoclonal antibodies (MAb) was generated against Chlamydia trachomatis serovar B, an etiologic agent of blinding trachoma. The specificities of MAb were determined by dot blot assay by using viable elementary bodies of 13 C. trachomatis serovars and two C. psittaci strains. The dot blot assay was used to identify those antigens that were unique and immunoaccessible on the chlamydial surface. MAb were identified that recognized bi-specific (serovars B and Ba) or subspecies-specific (various B complex serovars) surface-exposed antigenic determinants that were either resistant or sensitive to heat denaturation (56 degrees C, 30 min). All of the MAb recognized the major outer membrane protein as determined by either immunoblotting or radioimmunoprecipitation. MAb specific for immunoaccessible major outer membrane protein epitopes protected mice from toxic death after i.v. injection of B serovar elementary bodies and neutralized the infectivity of the organism for monkey eyes. In contrast, MAb reactive against non-immunoaccessible subspecies- or species-specific major outer membrane protein epitopes or against an immunoaccessible genus-specific epitope located on chlamydial lipopolysaccharide did not protect mice from toxic death or neutralize infectivity of the parasite for monkey eyes. These data suggest that those major outer membrane protein antigenic determinants that are serovar or serogroup specific and are accessible to antibody on the chlamydial cell surface may be useful as a recombinant subunit vaccine for trachoma.  相似文献   

18.
The mechanism by which the intracellular bacterial pathogen Chlamydia trachomatis enters eukaryotic cells is poorly understood. There are conflicting reports of entry occurring by clathrin-dependent and clathrin-independent processes. We report here that C. trachomatis serovar K enters HEp-2 and HeLa 229 epithelial cells and J-774A.1 mouse macrophage/monocyte cells via caveolin-containing sphingolipid and cholesterol-enriched raft microdomains in the host cell plasma membranes. First, filipin and nystatin, drugs that specifically disrupt raft function by cholesterol chelation, each impaired entry of C. trachomatis serovar K. In control experiments, filipin did not impair entry of the same organism by an antibody-mediated opsonic process, nor did it impair entry of BSA-coated microspheres. Second, the chlamydia-containing endocytic vesicles specifically reacted with antisera against the caveolae marker protein caveolin. These vesicles are known to become the inclusions in which parasite replication occurs. They avoid fusion with lysosomes and instead traffic to the Golgi region, where they intercept Golgi-derived vesicles that recycle sphingolipids and cholesterol to the plasma membrane. We also report that late-stage C. trachomatis inclusions continue to display high levels of caveolin, which they likely acquire from the exocytic Golgi vesicles. We suggest that the atypical raft-mediated entry process may have important consequences for the host-pathogen interaction well after entry has occurred. These consequences include enabling the chlamydial vesicle to avoid acidification and fusion with lysosomes, to traffic to the Golgi region, and to intercept sphingolipid-containing vesicles from the Golgi.  相似文献   

19.
The human respiratory tract pathogen Chlamydia pneumoniae AR39 is naturally infected by the bacteriophage ?CPAR39. The phage genome encodes six ORFs, [ORF8, ORF4, ORF5, and viral protein (VP) 1, VP2 and VP3]. To study the growth of the phage, antibodies were generated to VP1 and used to investigate the ?CPAR39 infection. Using immunofluorescence laser confocal microscopy and two-dimensional gel electrophoresis, we investigated the ?CPAR39 infection of C. pneumoniae AR39. It was observed that ?CPAR39 infection differentially suppressed the C. pneumoniae protein synthesis as the polymorphic membrane protein 10 and the secreted chlamydial protein Cpn0796 was hardly expressed while the secreted chlamydial protein Cpaf was expressed, but not secreted. The inclusion membrane protein, IncA, was demonstrated to surround the phage-infected abnormal reticulate bodies (RB) as well as being located in the inclusion membrane. As IncA is secreted by the type 3 secretion (T3S) system, it is likely that the T3S is disrupted in the phage-infected chlamydiae such that it accumulates around the infected RB.  相似文献   

20.
Chlamydia trachomatis Mip-like protein   总被引:4,自引:0,他引:4  
A 27 kDa Chlamydia trachomatis Mip-like protein with homology of a 175-amino-acid C-terminal fragment to the surface-exposed Legionella pneumophila mip-gene product has previously been described. In this paper the entire chlamydia Mip-like sequence of C. trachomatis serovar L2 (lymphogranuloma venereum (LGV) biovar) is presented. The sequence shows high similarity to the legionella Mip protein and its C-terminal region, like that of the legionella Mip, has high amino acid similarity to eukaryotic and prokaryotic FK506-binding proteins. The chlamydial mip-like gene was detected by polymerase chain reaction (PCR) in other C. trachomatis serovars and by sequencing of the mip-like genes of serovars B and E (trachoma biovar) was shown to be highly conserved within the two major biovars of C. trachomatis. Monoclonal and polyclonal antibodies raised against the recombinant Mip-like protein failed to demonstrate surface-exposed epitopes on infectious elementary bodies or reproductive reticulate body forms either by immunofluorescence or immuno-gold electron microscopy. However, a complement-dependent inhibition of up to 91% of infectivity for cell cultures was observed with antibodies to the N-terminal fragment of the Mip-like protein suggesting that antibody-accessible epitopes are present on infectious EBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号