首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atomic force microscopy-infrared spectroscopy (AFM-IR) and optical photothermal infrared spectroscopy (O-PTIR), which feature spectroscopic imaging spatial resolution down to ~ 50 nm and ~ 500 nm, respectively, were employed to characterize the nano- to microscale chemical compositional changes in bone. Since these changes are known to be age dependent, fluorescently labelled bone samples were employed. The average matrix/mineral ratio values decrease as the bone tissue matures as measured by both AFM-IR and O-PTIR, which agrees with previously published FTIR and Raman spectroscopy results. IR ratio maps obtained by AFM-IR reveal variation in matrix/mineral ratio-generating micron-scale bands running parallel to the bone surface as well as smaller domains within these bands ranging from ~ 50 to 700 nm in size, which is consistent with the previously published length scale of nanomechanical heterogeneity. The matrix/mineral changes do not exhibit a smooth gradient with tissue age. Rather, the matrix/mineral transition occurs sharply within the length scale of 100–200 nm. O-PTIR also reveals matrix/mineral band domains running parallel to the bone surface, resulting in waves of matrix/mineral ratios progressing from the youngest to most mature tissue. Both AFM-IR and O-PTIR show a greater variation in matrix/mineral ratio value for younger tissue as compared to older tissue. Together, this data confirms O-PTIR and AFM-IR as techniques that visualize bulk spectroscopic data consistent with higher-order imaging techniques such as Raman and FTIR, while revealing novel insight into how mineralization patterns vary as bone tissue ages.  相似文献   

2.
Nucleotomy is the gold standard treatment for disc herniation and has proven ability to restore stability by creating a bony bridge without any additional fixation. However, the evolution of mineral density in the extant and new bone after nucleotomy and fixation techniques has to date not been investigated in detail. The main goal of this study is to determine possible mechanisms that may trigger the bone remodelling and formation processes.With that purpose, a finite element model of the L4–L5 spinal segment was used. Bone mineral density (BMD), new tissue composition, and endplate deflection were determined as indicators of lumbar fusion. A bone-remodelling algorithm and a tissue-healing algorithm, both mechanically driven, were implemented to predict vertebral bone alterations and fusion patterns after nucleotomy, internal fixation, and anterior plate placement.When considering an intact disc height, neither nucleotomy nor internal fixation were able to provide the necessary stability to promote bony fusion. However, when 75% of the disc height was considered, bone fusion was predicted for both techniques. By contrast, an anterior plate allowed bone fusion at all disc heights. A 50% disc-height reduction led to osteophyte formation in all cases. Changes in the intervertebral disc tissue caused BMD alterations in the endplates.From this observations it can be drawn that fusion may be self-induced by controlling the mechanical stabilisation without the need of additional fixation. The amount of tissue to be removed to achieve this stabilisation remains to be determined.  相似文献   

3.
Osteoporosis is a systemic skeletal disorder associated with reduced bone mineral density and the consequent high risk of bone fractures. Current practice relates osteoporosis largely with absolute mass loss. The assessment of variations in chemical composition in terms of the main elements comprising the bone mineral and its effect on the bone’s quality is usually neglected. In this study, we evaluate the ratio of the main elements of bone mineral, calcium (Ca), and phosphorus (P), as a suitable in vitro biomarker for induced osteoporosis. The Ca/P concentration ratio was measured at different sites of normal and osteoporotic rabbit bones using two spectroscopic techniques: Auger electron spectroscopy (AES) and energy-dispersive X-ray spectroscopy (EDX). Results showed that there is no significant difference between samples from different genders or among cortical bone sites. On the contrary, we found that the Ca/P ratio of trabecular bone sections is comparable to cortical sections with induced osteoporosis. Ca/P ratio values are positively related to induced bone loss; furthermore, a different degree of correlation between Ca and P in cortical and trabecular bone is evident. This study also discusses the applicability of AES and EDX to the semiquantitative measurements of bone mineral’s main elements along with the critical experimental parameters.  相似文献   

4.
本研究的目的是以性腺完整的动物为模型调查左乙拉西坦(LEV)是否对于骨矿物质密度、骨结构和骨代谢生化指标产生影响,探究抗癫痫药物左乙拉西坦(LEV)是否对骨骼健康存在显著风险。本研究将实验大鼠分为对照组和试验组,每组10只。对照大鼠接受标准实验室饮食(SLD),而试验组中的大鼠喂食富含LEV的实验室饮食12周,并以双能X-线吸收仪测量全身、股骨和腰椎的骨密度。在骨组织中检查骨标记的浓度,股骨和胫骨均用于生物力学测试。研究结果表明:在LEV组中,脂肪组织的绝对值和相对值显著降低,全身骨密度增高,骨碱性磷酸酶(BALP)、Ⅰ型胶原C末端肽(CTX-1)和Ⅰ型前胶原氨基端前肽(PINP)浓度显著增加。本研究初步得出结论:在性腺完整的大鼠模型中长期施用LEV对骨质不具有负面影响。骨矿物质密度(BMD)的显著增加可能表明LEV对骨质可能有正面影响。  相似文献   

5.
BackgroundBoron is a trace element that plays an important role in numerous biological functions, including calcium metabolism, growth and maintenance of bone tissue. However, there are still no precise indications regarding a possible role of boron supplementation, and its amount of supplementation, to maintain bone health. So the aim of this narrative review was to consider the state of the art on the effectiveness of boron supplementation (alone or with other micronutrients) on growth and maintenance of bone in humans through control of calcium, vitamin D and sex steroid hormone metabolism in order to suggest a daily dosage of boron supplementation.Main findingsThis review included 11 eligible studies: 7 regarding the supplementation with boron alone and 4 regarding supplementation with boron and other nutrients. Despite the number of studies considered being low, the number of subjects studied is high (594) and the results are interesting.ConclusionsThe studies considered in this narrative review have evaluated the positive effectiveness on bone, in humans, through control of calcium, vitamin D and sex steroid hormone metabolism, considering a dietary supplementation of 3 mg/day of boron (alone or with other nutrients); this supplementation is demonstrably useful to support bone health (in order to prevent and maintain adequate bone mineral density), also considering the daily dose of 3 mg is much lower than the Upper Level indicated by EFSA in the daily dose of 10 mg.  相似文献   

6.
Bone and cartilage consist of different organic matrices, which can both be mineralized by the deposition of nano-sized calcium phosphate particles. We have studied these mineral particles in the mineralized cartilage layer between bone and different types of cartilage (bone/articular cartilage, bone/intervertebral disk, and bone/growth cartilage) of individuals aged 54 years, 12 years, and 6 months. Quantitative backscattered electron imaging and scanning small-angle X-ray scattering at a synchrotron radiation source were combined with light microscopy to determine calcium content, mineral particle size and alignment, and collagen orientation, respectively. Mineralized cartilage revealed a higher calcium content than the adjacent bone (p<0.05 for all samples), whereas the highest values were found in growth cartilage. Surprisingly, we found the mineral platelet width similar for bone and mineralized cartilage, with the exception of the growth cartilage sample. The most striking result, however, was the abrupt change of mineral particle orientation at the interface between the two tissues. While the particles were aligned perpendicular to the interface in cartilage, they were oriented parallel to it in bone, reflecting the morphology of the underlying organic matrices. The tight bonding of mineralized cartilage to bone suggests a mechanical role for the interface of the two elastically different tissues, bone and cartilage.  相似文献   

7.
Raman spectra were acquired on ox femur samples treated with hydrazine to remove the organic components of bone. A large increase in the signal-noise ratio of the mineral spectrum resulted from the exposure of the mineral surface and the removal of fluorescent components of the organic matrix. The effect of hydrazine treatment of the mineral matrix has been reinvestigated and shown to be slight on the basis of second derivative FTIR data. This is the first time that this high resolution technique has been applied to biological minerals.  相似文献   

8.
目的:齿状突骨折是颈椎的严重损伤,其中大部分需要行前路螺钉内固定术治疗,齿状突的几何参数对螺钉的选择起决定性作用,其骨密度则影响螺钉对骨质的把持力,齿状突固有的生物力学性质对齿状突骨折固定效果进而对骨折愈合有较大影响,基于以上考虑,本课题分析并比较了几何参数、骨密度与生物力学性质的相关性,评价其指导临床应用的意义。方法:将15例经福尔马林浸泡的国人枢椎标本剔除周围软组织,分别测量并分析各个标本的几何参数、骨密度以及扭转刚度、剪切刚度、拉伸刚度等生物力学性质的特点,并比较它们之间的相关性。结果:齿状突为一椭球形结构,难以容纳两枚内固定螺钉,齿状突的几何参数、骨密度和生物力学性质之间没有相关性。结论:临床上在对齿状突骨折采用螺钉内固定前需要了解齿状突的解剖结构并据此选取适当尺寸的螺钉,应根据齿状突基底部的横径选择螺钉的直径,根据基底部到前唇的距离选择螺钉光滑段的长度,根据枢椎高度选择螺钉长度,齿状突的几何参数、骨密度和齿状突的生物力学性质之间并无相关性,并不能根据齿状突几何参数、骨密度来预测其生物力学强度进而预测内固定的初始稳定性。  相似文献   

9.
Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure–activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen.  相似文献   

10.
Effects of differences in mineralization on the mechanical properties of bone   总被引:21,自引:0,他引:21  
There is a considerable variation in the mineralization of bone; normal, non-pathological compact bone has ash masses ranging from 45 to 85% by mass. This range of mineralization results in an even greater range of mechanical properties. The Young modulus of elasticity can range from 4 to 32 GPa, bending strength from 50 to 300 MPa, and the work of fracture from 200 to 7000 Jm-2. It is not possible for any one type of bone to have high values for all three properties. Very high values of mineralization produce high values of Young modulus but low values of work of fracture (which is a measure of fracture toughness). Rather low values of mineralization are associated with high values of work of fracture but low values of Young modulus and intermediate values of bending strength. The reason for the high value for the Young modulus associated with high mineralization is intuitively obvious, but has not yet been rigorously modelled. The low fracture toughness associated with high mineralization may be caused by the failure of various crack-stopping mechanisms that can act when the mineral crystals in bone have not coalesced, but which become ineffective when the volume fraction of mineral becomes too high. The adoption of different degrees of mineralization by different bones, leading to different sets of mechanical properties, is shown to be adaptive in most cases studied, but some puzzles still remain.  相似文献   

11.
目的:探讨运动强度对糖尿病大鼠骨密度及骨代谢的影响,为糖尿病骨质疏松的预防和治疗提供实验依据。方法:采用一次性腹腔注射链服佐菌素建立糖尿病大鼠模型,随机分为糖尿病对照组、小强度运动组(10 m/min)、中强度运动组(20 m/min)和高强度运动组(30 m/min)。分别于运动前后测定各组大鼠的血糖、骨密度、血清骨钙素(BGP)、碱性磷酸化酶(AKP)、血钙(S-Ca)及血磷(S-P)含量。结果:运动组大鼠血糖均低于训练前和对照组(P0.05)。小强度运动组和高强度运动组大鼠骨密度低于对照组,中强度运动组大鼠骨密度显著高于对照组、小强度运动组和高强度运动组(P0.05);小强度运动组与高强度运动组大鼠骨密度无显著性差异(P0.05)。运动组大鼠BGP和S-P显著升高,AKP下降,差异具有统计学意义(P0.05)。小强度运动组和高强度运动组大鼠S-Ca无显著变化(P0.05);中强度运动组大鼠S-Ca显著升高,且高于小强度运动组和高强度运动组(P0.05)。结论:运动强度对骨密度和骨代谢有一定影响,采取适当的体育运动可提高血清骨钙素含量,改善骨代谢状况,有利于糖尿病骨质疏松症的预防。  相似文献   

12.
To eliminate the potential for infection, many tissue banks routinely process and terminally sterilize allografts prior to transplantation. A number of techniques, including the use of scanning electron microscopy, bone graft models, and mechanical property tests, are used to evaluate the properties of allograft bone. However, as these methods are time consuming and often destroy the bone sample, the quality assessment of allograft bones are not routinely performed after processing and sterilization procedures. Raman spectroscopy is a non-destructive, rapid analysis technique that requires only small sample volumes and has recently been used to evaluate the mineral content, mineral crystallinity, acid phosphate and carbonate contents, and collagen maturity in human and animal bones. Here, to establish a quality assessment method of allograft bones using Raman spectroscopy, the effect of several common sterilization and preservation procedures on rat femoral bones were investigated. We found that freeze-thawing had no detectable effects on the composition of bone minerals or matrix, although heat treatment and gamma irradiation resulted in altered Raman spectra. Our findings suggest Raman spectroscopy may facilitate the quality control of allograft bone after processing and sterilization procedures.  相似文献   

13.
This experiment was designed to compare the effect of ingestion of a wheat flours on mineral status and bone characteristics in rats. White flour was tested either without further mineral supplementation or with Mg, Fe, Zn and Cu supplementation. The flour diets were compared to a control purified diet. Four groups of 10 male Wistar rats each were fed one of the experimental diets for 6 wk and mineral status and tissue retention as well as bone characteristics were determined. As expected, mineral intake, except for calcium, was significantly lesser in rats fed the white flour diet than in the other groups. The rats fed the white flour diet had the lowest food intake, weight gain, fecal excretion and intestinal fermentation. The most important result was that Mg and Fe status were drastically lower in rats fed the white flour diet than in those fed whole flour or control diets. The status of these both elements were significantly improved by the mineral supplementation of white flour. There were no major significant differences between mineral-supplemented white flour and whole flour groups in mineral status. Furthermore, bone mineral densities (total, metaphyseal and diphyseal) were significantly lower in rats fed white flour diet compared to the other diet groups, while no significant difference was observed between the mineral-supplemented white flour, whole flour or control diet groups. In conclusion, the present work shows clearly the importance of mineral-supplementation of white wheat flour to sustain an adequate intake of minerals. Our results indicate also that the whole wheat flour did not negatively alter mineral bioavailability, in comparison to mineral supplemented white flour. Clinical studies are still needed to confirm these rat results in human.  相似文献   

14.
Antlers are costly bone structures whose size and external characteristics are influenced by nutrition, climatic variability, and other factors. In this study, we examined the effects of a well-managed captive population vs unmanaged free-ranging herds (greatly differing in food availability and energetic and immunological expenditures) on antler structural characteristics of Iberian red deer. We assessed the effect of management and sample position in the antler on cortical bone depth, bone mineral and protein content, and radiographic bone opacity. Cortical bone depth and mineral percent was greater in captive animals on greater food availability and lower energetic and immunological expenditures. After removing the inverse relationship with mineral content in the model, protein percent was also higher in antlers from captive than in those from free-ranging deer. Management system also influenced radio-opacity indirectly as interaction with other factors and cortical bone depth effects. Structural properties also differed between antler points that are very close in the antler and seem to differ only in the role they play. In conclusion, captive management can affect antler structure and composition, possibly as a result of different availability of food and immunological costs.  相似文献   

15.
Fourier transform infrared spectroscopy is utilized to examine the effects of increased calcium, vitamin D, and combined calcium-vitamin D supplementation on osteoporotic rabbit bones with induced inflammation. The study includes different bone sites (femur, tibia, humerus, vertebral rib) in an effort to explore possible differences among the sites. We evaluate the following parameters: mineral-to-matrix ratio, carbonate content, and non-apatitic species (labile acid phosphate and labile carbonate) contribution to bone mineral. Results show that a relatively high dose of calcium or calcium with vitamin D supplementation increases the bone mineralization index significantly. On the other hand, vitamin D alone is not as effective in promoting mineralization even with high intake. Mature B-type apatite was detected for the group with calcium supplementation similar to that of aged bone. High vitamin D intake led to increased labile species concentration revealing bone formation. This is directly associated with the suppression of pro-inflammatory cytokines linked to induced inflammation. The latter is known to adversely alter bone metabolism, contributing to the aetiopathogenesis of osteoporosis. Thus, a high intake of vitamin D under inflammation-induced osteoporosis does not promote mineralization but suppresses bone resorption and restores metabolic balance.  相似文献   

16.
Plio-Pleistocene faunal assemblages from Swartkrans Cave (South Africa) preserve large numbers of primate remains. Brain, C.K., 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago suggested that these primate subassemblages might have resulted from a focus by carnivores on primate predation and bone accumulation. Brain's hypothesis prompted us to investigate, in a previous study, this taphonomic issue as it relates to density-mediated destruction of primate bones (J. Archaeol. Sci. 29, 2002, 883). Here we extend our investigation of Brain's hypothesis by examining additional intrinsic qualities of baboon bones and their role as mediators of skeletal element representation in carnivore-created assemblages. Using three modern adult baboon skeletons, we collected data on four intrinsic bone qualities (bulk bone mineral density, maximum length, volume, and cross-sectional area) for approximately 81 bones per baboon skeleton. We investigated the relationship between these intrinsic bone qualities and a measure of skeletal part representation (the percentage minimum animal unit) for baboon bones in carnivore refuse and scat assemblages. Refuse assemblages consist of baboon bones not ingested during ten separate experimental feeding episodes in which individual baboon carcasses were fed to individual captive leopards and a spotted hyena. Scat assemblages consist of those baboon bones recovered in carnivore regurgitations and feces resulting from the feeding episodes. In refuse assemblages, volume (i.e., size) was consistently the best predictor of element representation, while cross-sectional area was the poorest predictor in the leopard refuse assemblage and bulk bone mineral density (i.e., a measure of the proportion of cortical to trabecular bone) was the poorest predictor in the hyena refuse assemblage. In light of previous documentation of carnivore-induced density-mediated destruction to bone assemblages, we interpret the current findings as suggestive of the secondary importance of bulk bone mineral density to other intrinsic qualities of skeletal elements (e.g., size, maximum dimension, and average cross-sectional area). It is only when skeletal elements are too large for consumption (e.g., many long bones) that they are fragmented following intra-element patterns of density-mediated carnivore destruction. There appears to be a size threshold beneath which bulk bone mineral density contributes little to mediating carnivore destruction of carcasses. Thus, depending on body size of the predator, body size of the prey, and specific size of the element, bulk bone mineral density may play little or no role of primary importance in mediating the destruction of skeletal elements. We compare patterns in modern comparative assemblages to patterns in primate fossil assemblages from Swartkrans. One of the fossil assemblages, Swartkrans Member 1, Hanging Remnant, most closely approximates a hyena (possibly refuse) assemblage pattern, while the Swartkrans Member 2 assemblage most closely approximates a leopard (possibly scat) assemblage pattern. The Swartkrans Member 1, Lower Bank, assemblage does not closely approximate any of our modern comparative assemblage patterns.  相似文献   

17.
目的:观察在牙周骨再生过程中骨形态发生蛋白-1(BMP-1)的表达的变化情况及临床意义。方法:以我院收治的牙周骨缺损患者196例作为研究对象,采用常规的基础牙周治疗(龈上洁治彻底,龈下刮治,整平根面)处理后,通过引导组织再生术(GTR)技术对骨缺损进行修复的同时,植入Bio-oss人工骨材料和Bio-gide胶原膜。在治疗前和治疗后,分别测定患者血清BMP-1水平,分析BMP-1表达水平与牙周骨缺损修复的关系。结果:与治疗前相比,患者治疗后的牙周骨缺损均有所修复,所有患者在术后所有时间点的PPD和骨密度值与治疗前相比均显著改善(P0.05)。治疗6个月后,牙周骨密度出现小幅度下降,但显著高于治疗前,差异具有统计学意义(P0.05)。与治疗前相比,所有患者治疗后1 d、2 d、5 d、10 d、1个月、3个月、6个月血清BMP-1的水平均显著升高,差异具有统计学意义(P0.05),且治疗后BMP-1水平的变化与PPD呈显著负相关(P0.05),但与骨密度的相关性不显著(P0.05)。结论:血清BMP-1在牙周骨修复过程存在动态变化与患者牙周骨术后恢复相关。  相似文献   

18.
The bone remodeling process takes place at the surface of trabeculae and results in a non-uniform mineral distribution. This will affect the mechanical properties of cancellous bone, because the properties of bone tissue depend on its mineral content. We investigated how large this effect is by simulating several non-uniform mineral distributions in 3D finite element models of human trabecular bone and calculating the apparent stiffness of these models. In the ‘linear model’ we assumed a linear relation between mineral content and Young's modulus of the tissue. In the ‘exponential model’ we included an empirical exponential relation in the model. When the linear model was used the mineral distribution slightly changed the apparent stiffness, the difference varied between an 8% decrease and a 4% increase compared to the uniform model with the same BMD. The exponential model resulted in up to 20% increased apparent stiffness in the main load-bearing direction. A thin less mineralized surface layer (28 μm) and highly mineralized interstitial bone (mimicking mineralization resulting from anti-resorptive treatment) resulted in the highest stiffness. This could explain large reductions in fracture risk resulting from small increases in BMD. The non-uniform mineral distribution could also explain why bone tissue stiffness determined using nano-indentation is usually higher than finite element (FE)-determined stiffness. We conclude that the non-uniform mineral distribution in trabeculae does affect the mechanical properties of cancellous bone and that the tissue stiffness determined using FE-modeling could be improved by including detailed information about mineral distribution in trabeculae in the models.  相似文献   

19.
Bones are constantly remodeled throughout life to maintain robust structure and function. Dysfunctional remodeling can result in pathological conditions such as osteoporosis (bone loss) or osteosclerosis (bone gain). Bone contains 100s of extracellular matrix (ECM) proteins and the ECM of the various bone tissue compartments plays essential roles directing the remodeling of bone through the coupled activity of osteoclasts (which resorb bone) and osteoblasts (which produce new bone). One important role for the ECM is to serve as a scaffold upon which mineral is deposited. This scaffold is primarily type I collagen, but other ECM components are involved in binding of mineral components. In addition to providing a mineral scaffolding role, the ECM components provide structural flexibility for a tissue that would otherwise be overly rigid. Although primarily secreted by osteoblast-lineage cells, the ECM regulates cells of both the osteoblast-lineage (such as progenitors, mature osteoblasts, and osteocytes) and osteoclast-lineage (including precursors and mature osteoclasts), and it also influences the cross-talk that occurs between these two oppositional cells. ECM influences the differentiation process of mesenchymal stem cells to become osteoblasts by both direct cell-ECM interactions as well as by modulating growth factor activity. Similarly, the ECM can influence the development of osteoclasts from undifferentiated macrophage precursor cells, and influence osteoclast function through direct osteoclast cell binding to matrix components. This comprehensive review will focus on how networks of ECM proteins function to regulate osteoclast- and osteoblast-mediated bone remodeling. The clinical significance of these networks on normal bone and as they relate to pathologies of bone mass and geometry will be considered. A better understanding of the dynamic role of ECM networks in regulating tissue function and cell behavior is essential for the development of new treatment approaches for bone loss.  相似文献   

20.
All the living organisms originate, evolve and live under geomagnetic field (GMF, 20–70 µT). With rapid development in science and technology, exposure to various static magnetic fields (SMFs) from natural and man-made sources remains a public environmental topic in consideration of its probable health risk for humans. Many animal studies related to health effect have demonstrated that SMF could improve bone formation and enhance bone healing. Moreover, most of the studies focused on local SMF generated by rod-type magnet. It was difficult to come to a conclusion that how SMF affected bone metabolism in mice. The present study employed hypomagnetic field (HyMF, 500 nT), and moderate SMF (MMF, 0.2 T) to systematically investigate the effects of SMF with continuous exposure on microstructure and mechanical properties of bone. Our results clearly indicated that 4-week MMF exposure did not affect bone biomechanical properties or bone microarchitecture, while HyMF significantly inhibited the growth of mice and elasticity of bone. Furthermore, mineral elements might mediate the biological effect of SMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号