首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical tree communities present one of the most challenging systems for studying the processes underlying community assembly. Most community assembly hypotheses consider the relative importance of the ecological similarity of co‐occurring species. Quantifying this similarity is a daunting and potentially impossible task in species‐rich assemblages. During the past decade tropical tree ecologists have increasingly utilized phylogenetic trees and functional traits to estimate the ecological similarity of species in order to test mechanistic community assembly hypotheses. A large amount of work has resulted with many important advances having been made along the way. That said, there are still many outstanding challenges facing those utilizing phylogenetic and functional trait approaches to study community assembly. Here I review the conceptual background, major advances and major remaining challenges in phylogenetic‐ and trait‐based approaches to community ecology with a specific focus on tropical trees. I argue that both approaches tremendously improve our understanding of tropical tree community ecology, but neither approach has fully reached its potential thus far.  相似文献   

2.
Species co-occurrence at fine spatial scales is expected to be nonrandom in relation to species phylogenetic relatedness and functional similarity. On the one hand, closely related species that occur together and experience similar environmental conditions are likely to share phenotypic traits due to the process of environmental filtering. On the other hand, species that are too similar are unlikely to co-occur due to competitive exclusion. We surveyed a woodland cerrado, southeastern Brazil, to test whether co-occurrence in tree species shows functional or phylogenetic structuring at fine spatial scale. Searching for correlations between an index of species co-occurrence and both functional trait differences and phylogenetic distances, we provided evidence for a predominant role of environment filters in determining the co-occurrence of functionally similar tree species in cerrado. However, we did not find any effect of phylogenetic relatedness on tree species co-occurrence. We suggest that the phylogenetic relatedness of co-occurring cerrado tree species did not present a pattern, because the species functional traits were randomly distributed on the phylogeny. Thus, phylogenetic relatedness and functional similarity do not seem to limit the co-occurrence at fine spatial scale of cerrado tree species.  相似文献   

3.
Plant functional traits, especially leaf traits, are accepted proxies for ecosystem properties. Typically, they are measured at the species level, neglecting within-species variation. While there is extensive knowledge about functional trait changes (both within and across species) along abiotic gradients, little is known about biotic influences, in particular at local scales. Here, we used a large biodiversity-ecosystem functioning experiment in subtropical China to investigate intra-specific trait changes of 16 tree species as a response to species richness of the local neighbourhood. We hypothesized that because of positive complementarity effects, species shift their leaf traits towards a more acquisitive growth strategy, when species richness of the local neighbourhood is higher. The trait shift should be most pronounced, when a focal tree's closest neighbour is from a different species, but should still be detectable as a response to species richness of the directly surrounding tree community. Consequently, we expected that trees with a con-specific closest neighbour have the strongest response to species richness of the surrounding tree community, i.e., the steepest increase of acquisitive traits. Our results indicate that species diversity promoted reduced competition and complementarity in resource use at both spatial scales considered. In addition, the closest neighbour had considerably stronger effects than the surrounding tree community. As expected, trees with a con-specific nearest neighbour showed the strongest trait shifts. However, the predicted positive effect of local hetero-specificity disappeared at the highest diversity levels of the surrounding tree community, potentially resulting from a higher probability to meet a strong competitor in a diverse environment. Our findings show that leaf traits within the same species vary not only in response to changing abiotic conditions, but also in response to local species richness. This highlights the benefit of including within-species trait variation when analysing relationships between plant functional traits and ecosystem functions.  相似文献   

4.
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co‐occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait‐based tests to gain insights into community processes at four spatial scales in a large stem‐mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait‐based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co‐occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait‐based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes.  相似文献   

5.
A rapidly increasing effort to merge functional community ecology and phylogenetic biology has increased our understanding of community assembly. However, studies using both phylogenetic‐ and trait‐based methods have been mainly conducted in old‐growth forests, with fewer studies in human‐disturbed communities, which play an increasingly important role in providing ecosystem services as primary forests are degraded. We used data from 18 1‐ha plots in tropical old‐growth forests and secondary forests with different disturbance histories (logging and shifting cultivation) and vegetation types (tropical lowland and montane forests) on Hainan Island, southern China. The distributions of 11 functional traits were compared among these six forest types. We used a null model approach to assess the effects of disturbance regimes on variation in response and effect traits and community phylogenetic structure across different stem sizes (saplings, treelets, and adult trees) and spatial scales (10–50 m). We found significant differences in the distribution of functional traits in highly disturbed lowland sites versus other forest types. Many individuals in highly disturbed lowland sites were deciduous, spiny, with non‐fleshy fruits and seeds dispersed passively or by wind, and low SLA. The response traits of coexisting species were clustered in all sites except for highly disturbed lowland sites where evenness was evident. There were different distributions of effect traits for saplings and treelets among different forest types but adult trees showed stronger clustering of trait values with increasing spatial scale among all forest types. Phylogenetic clustering predominated across all size classes and spatial scales in the highly disturbed lowland sites, and evenness in other forest types. High disturbance can lead to abiotic filtering, generating a community dominated by closely related species with disturbance‐adapted traits, where biotic interactions play a relatively minor role. In lightly disturbed and old growth forests, multiple processes simultaneously drive the community assembly, but biotic processes dominate at the fine scale.  相似文献   

6.
Understanding of community assembly has been improved by phylogenetic and trait‐based approaches, yet there is little consensus regarding the relative importance of alternative mechanisms and few studies have been done at large geographic and phylogenetic scales. Here, we use phylogenetic and trait dispersion approaches to determine the relative contribution of limiting similarity and environmental filtering to community assembly of stream fishes at an intercontinental scale. We sampled stream fishes from five zoogeographic regions. Analysis of traits associated with habitat use, feeding, or both resulted in more occurrences of trait underdispersion than overdispersion regardless of spatial scale or species pool. Our results suggest that environmental filtering and, to a lesser extent, species interactions were important mechanisms of community assembly for fishes inhabiting small, low‐gradient streams in all five regions. However, a large proportion of the trait dispersion values were no different from random. This suggests that stochastic factors or opposing assembly mechanisms also influenced stream fish assemblages and their trait dispersion patterns. Local assemblages tended to have lower functional diversity in microhabitats with high water velocity, shallow water depth, and homogeneous substrates lacking structural complexity, lending support for the stress‐dominance hypothesis. A high prevalence of functional underdispersion coupled with phylogenetic underdispersion could reflect phylogenetic niche conservatism and/or stabilizing selection. These findings imply that environmental filtering of stream fish assemblages is not only deterministic, but also influences assemblage structure in a fairly consistent manner worldwide.  相似文献   

7.
Trait‐response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long‐term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait‐based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long‐term experimental evidence that trait‐based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest.  相似文献   

8.
Plant functional traits reflect different evolutionary responses to environmental variation, and among extant species determine the outcomes of interactions between plants and their environment, including other plant species. Thus, combining phylogenetic and trait-based information can be a powerful approach for understanding community assembly processes across a range of spatial scales. We used this approach to investigate tree community composition at Phou Khao Khouay National Park (18°14’-18°32’N; 102°38’- 102°59’E), Laos, where several distinct forest types occur in close proximity. The aim of our study was to examine patterns of plant community assembly across the strong environmental gradients evident at our site. We hypothesized that differences in tree community composition were being driven by an underlying gradient in soil conditions. Thus, we predicted that environmental filtering would predominate at the site and that the filtering would be strongest on sandier soil with low pH, as these are the conditions least favorable to plant growth. We surveyed eleven 0.25 ha (50x50 m) plots for all trees above 10 cm dbh (1221 individual trees, including 47 families, 70 genera and 123 species) and sampled soils in each plot. For each species in the community, we measured 11 commonly studied plant functional traits covering both the leaf and wood economic spectrum traits and we reconstructed a phylogenetic tree for 115 of the species in the community using rbcL and matK sequences downloaded from Genebank (other species were not available). Finally we compared the distribution of trait values and species at two scales (among plots and 10x10m subplots) to examine trait and phylogenetic community structures. Although there was strong evidence that an underlying soil gradient was determining patterns of species composition at the site, our results did not support the hypothesis that the environmental filtering dominated community assembly processes. For the measured plant functional traits there was no consistent pattern of trait dispersion across the site, either when traits were considered individually or when combined in a multivariate analysis. However, there was a significant correlation between the degree of phylogenetic dispersion and the first principle component axis (PCA1) for the soil parameters. Moreover, the more phylogenetically clustered plots were on sandier soils with lower pH. Hence, we suggest that the community assembly processes across our site may reflect the influence of more conserved traits that we did not measure. Nevertheless, our results are equivocal and other interpretations are possible. Our study illustrates some difficulties in combining trait and phylogenetic approaches that may result from the complexities of integrating spatial and evolutionary processes that vary at different scales.  相似文献   

9.
Aims Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps.Methods Using the quadratic diversity measure based on six functional traits—specific leaf area, leaf dry matter content, plant height, leaf carbon content, leaf nitrogen content and leaf carbon to nitrogen content alongside a species-resolved phylogenetic tree—we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps.Important findings Our study highlights two main points. First, climate and land-use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land-use factors in plant functional and phylogenetic community turnover and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.  相似文献   

10.
Dong He  Shekhar R. Biswas 《Oikos》2019,128(5):659-667
Species’ response to environmental site conditions and neighborhood interactions are among the important drivers of species’ spatial distributions and the resultant interspecies spatial association. The importance of competition to interspecies spatial association can be inferred from a high degree of trait dissimilarity of the associated species, and vice versa for environmental filtering. However, because the importance of environmental filtering and competition in structuring plant communities often vary with spatial scale and with plant life stage, the species’ spatial association–trait dissimilarity relationship should vary accordingly. We tested these assumptions in a fully mapped 50‐ha subtropical evergreen forest of China, where we assessed the degrees of interspecies spatial associations between adult trees and between saplings at two different spatial scales (10 m versus 40 m) and measured the degrees of trait dissimilarity of the associated species using six traits (leaf area, specific leaf area, leaf dry‐matter content, wood density, wood dry‐matter content and maximum height). Consistent across spatial scales and plant life stages, the degree of interspecies spatial association and the degree of overall trait dissimilarity (i.e. all six traits together) were negatively correlated, suggesting that environmental filtering might help assemble functionally similar species in the forest under study. However, when we looked into the spatial association–trait dissimilarity relationship for individual traits, we found that the relationships between interspecies spatial associations and the dissimilarity of wood density and dry‐matter content were significant for adults but not for saplings, suggesting the importance of wood traits in species’ survival during ontogeny. We conclude that processes shaping interspecies spatial association are spatial scale and plant life stage dependent, and that the distributions of functional traits offer useful insights into the processes underlying community spatial structure.  相似文献   

11.
Darwin's naturalization conundrum states that successful invaders must be closely related to native species to possess the traits to tolerate that environment, but distantly related enough to possess traits allowing exploitation of underutilized niches, thereby minimizing competition. Although influential, this hypothesis is based on several simplistic assumptions. In particular, the relationship among phylogenetic relatedness, similarity, and competition is more complex than assumed and changes with spatial and phylogenetic scale. Competitive interactions are determined by limiting similarity and trait hierarchies associated with separate traits. Successful invaders thus need to be similar to native species in some respects, but different in others. This combination of similarities and differences is unlikely to be conserved. Further, many invasive species are represented in their novel range by genotypes with extreme trait values or plasticity relative to the species mean. Selection for these genotypes may alter the similarity between invasive and native species, thus obscuring the relationship between competition and phylogenetic relatedness. As environmental filtering and competition often act on different spatial scales, approaches assessing how individual traits relate to invasion at these scales (species pools vs local community) may improve our understanding of the relationship between similarity and invasion.  相似文献   

12.
植物群落构建机制研究进展   总被引:25,自引:15,他引:10  
柴永福  岳明 《生态学报》2016,36(15):4557-4572
群落构建研究对于解释物种共存和物种多样性的维持是至关重要的,因此一直是生态学研究的中心论题。尽管近年来关于生态位和中性理论的验证研究已经取得了显著的成果,但对于局域群落构建机制的认识仍存在很大争议。随着统计和理论上的进步使得用功能性状和群落谱系结构解释群落构建机制变为可能,主要是通过验证共存物种的性状和谱系距离分布模式来实现。然而,谱系和功能性状不能相互替代,多种生物和非生物因子同时控制着群落构建,基于中性理论的扩散限制、基于生态位的环境过滤和竞争排斥等多个过程可能同时影响着群落的构建。所以,综合考虑多种方法和影响因素探讨植物群落的构建机制,对于预测和解释植被对干扰的响应,理解生物多样性维持机制有重要意义。试图在简要回顾群落构建理论及研究方法发展的基础上,梳理其最新研究进展,并探讨整合功能性状及群落谱系结构的研究方法,解释群落构建和物种多样性维持机制的可能途径。在结合功能性状和谱系结构研究群落构建时,除了考虑空间尺度、环境因子、植被类型外,还应该关注时间尺度、选择性状的种类和数量、性状的种内变异、以及人为干扰等因素对群落构建的影响。  相似文献   

13.
Studies on tree communities have demonstrated that species diversity can enhance forest productivity, but the driving mechanisms at the local neighbourhood level remain poorly understood. Here, we use data from a large‐scale biodiversity experiment with 24 subtropical tree species to show that neighbourhood tree species richness generally promotes individual tree productivity. We found that the underlying mechanisms depend on a focal tree's functional traits: For species with a conservative resource‐use strategy diversity effects were brought about by facilitation, and for species with acquisitive traits by competitive reduction. Moreover, positive diversity effects were strongest under low competition intensity (quantified as the total basal area of neighbours) for acquisitive species, and under high competition intensity for conservative species. Our findings demonstrate that net biodiversity effects in tree communities can vary over small spatial scales, emphasising the need to consider variation in local neighbourhood interactions to better understand effects at the community level.  相似文献   

14.
Community ecologists are active in describing species by their functional traits, quantifying the functional structure of plant and animal assemblages and inferring community assembly processes with null‐model analyses of trait distribution and functional diversity indices. Intraspecific variation in traits and effects of spatial scale are potentially important in these analyses. Here, we introduce the R package cati (Community Assembly by Traits: Individuals and beyond) available on CRAN, for the analysis of community assembly with functional traits. cati builds on a recent approach to community assembly that explicitly incorporates individual differences in community assembly analyses and decomposes phenotypic variations across scales and organizational levels, based on three phenotypic variance ratios, termed the T‐statistics. More generally, the cati package 1) calculates a variety of single‐trait and multi‐trait indices from interspecific and intraspecific trait measures; 2) it partitions functional trait variation among spatial and taxonomic levels; 3) it implements a palette of flexible null models for detecting non‐random patterns of functional traits. These patterns can be used to draw inferences about hypotheses of community assembly such as environmental filtering and species interactions. The basic input for cati is a data frame in which columns are traits, rows are species or individuals, and entries are the measured trait values. The cati package can also incorporate a square distance matrix into analyses, which could include phylogenetic or genetic distances among individuals or species. Users select from a variety of functional trait metrics and analyze these relative to a null model that specifies trait distributions in a regional source pool.  相似文献   

15.
As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25‐ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests.  相似文献   

16.
The relative importance of environmental filtering, biotic interactions and neutral processes in community assembly remains an openly debated question and one that is increasingly addressed using phylogenetic approaches. Closely related species may occur together more frequently than expected (phylogenetic clustering) if environmental filtering operates on traits with significant phylogenetic signal. Recent studies show that phylogenetic clustering tends to increase with spatial scale, presumably because greater environmental variation is encompassed at larger spatial scales, providing opportunities for species to sort across environmental gradients. However, if environmental filtering is the cause of species sorting along environmental gradients, then environmental variation rather than spatial scale per se should drive the processes governing community assembly. Using species abundance and light availability data from a long‐term experiment in Minnesota oak savanna understory communities, we explicitly test the hypothesis that greater environmental variation results in greater phylogenetic clustering when spatial scale is held constant. Concordant with previous studies, we found that phylogenetic community structure varied with spatial extent. At the landscape scale (~1000 ha), communities were phylogenetically clustered. At the local scale (0.375ha), phylogenetic community structure varied among plots. As hypothesized, plots encompassing the greatest environmental variation in light availability exhibited the strongest phylogenetic clustering. We also found strong correlations between species functional traits, particularly specific leaf area (SLA) and perimeter per area (PA), and species light availability niche. There was also a phylogenetic signal in both functional traits and species light availability niche, providing a mechanistic explanation for phylogenetic clustering in relation to light availability. We conclude that the pattern of increased phylogenetic clustering with increased environmental variation is a consequence of environmental filtering acting on phylogenetically conserved functional traits. These results indicate that the importance of environmental filtering in community assembly depends not on spatial scale per se, but on the steepness of the environmental gradient.  相似文献   

17.
  1. Trait‐based ecology holds the promise to explain how plant communities work, for example, how functional diversity may support community productivity. However, so far it has been difficult to combine field‐based approaches assessing traits at the level of plant individuals with limited spatial coverage and approaches using remote sensing (RS) with complete spatial coverage but assessing traits at the level of vegetation pixels rather than individuals. By delineating all individual‐tree crowns within a temperate forest site and then assigning RS‐derived trait measures to these trees, we combine the two approaches, allowing us to use general linear models to estimate the influence of taxonomic or environmental variation on between‐ and within‐species variation across contiguous space.
  2. We used airborne imaging spectroscopy and laser scanning to collect individual‐tree RS data from a mixed conifer‐angiosperm forest on a mountain slope extending over 5.5 ha and covering large environmental gradients in elevation as well as light and soil conditions. We derived three biochemical (leaf chlorophyll, carotenoids, and water content) and three architectural traits (plant area index, foliage‐height diversity, and canopy height), which had previously been used to characterize plant function, from the RS data. We then quantified the contributions of taxonomic and environmental variation and their interaction to trait variation and partitioned the remaining within‐species trait variation into smaller‐scale spatial and residual variation. We also investigated the correlation between functional trait and phylogenetic distances at the between‐species level. The forest consisted of 13 tree species of which eight occurred in sufficient abundance for quantitative analysis.
  3. On average, taxonomic variation between species accounted for more than 15% of trait variation in biochemical traits but only around 5% (still highly significant) in architectural traits. Biochemical trait distances among species also showed a stronger correlation with phylogenetic distances than did architectural trait distances. Light and soil conditions together with elevation explained slightly more variation than taxonomy across all traits, but in particular increased plant area index (light) and reduced canopy height (elevation). Except for foliage‐height diversity, all traits were affected by significant interactions between taxonomic and environmental variation, the different responses of the eight species to the within‐site environmental gradients potentially contributing to the coexistence of the eight abundant species.
  4. We conclude that with high‐resolution RS data it is possible to delineate individual‐tree crowns within a forest and thus assess functional traits derived from RS data at individual level. With this precondition fulfilled, it is then possible to apply tools commonly used in field‐based trait ecology to partition trait variation among individuals into taxonomic and potentially even genetic variation, environmental variation, and interactions between the two. The method proposed here presents a promising way of assessing individual‐based trait information with complete spatial coverage and thus allowing analysis of functional diversity at different scales. This information can help to better understand processes shaping community structure, productivity, and stability of forests.
  相似文献   

18.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

19.
Aim Wood properties are related to tree physiology and mechanical stability and are influenced by both phylogeny and the environment. However, it remains unclear to what extent geographical gradients in wood traits are shaped by either phylogeny or the environment. Here we aimed to disentangle the influences of phylogeny and the environment on spatial trends in wood traits. Location China. Methods We compiled a data set of 11 wood properties for 618 tree species from 98 sampling sites in China to assess their phylogenetic and spatial patterns, and to determine how many of the spatial patterns in wood properties are attributable to the environment after correction for phylogenetic influences. Result All wood traits examined exhibited significant phylogenetic signal. The widest divergence in wood traits was observed between gymnosperms and angiosperms, Rosids and Asterids, Magnoiliids and Eudicots, and in Lamiales. For most wood traits, the majority of trait variation was observed at genus and species levels. The mechanical properties of wood showed correlated evolution with wood density. Most of the mechanical properties of wood exhibited significant latitudinal variation but limited or no altitudinal variation, and were positively correlated with mean annual precipitation based on both Pearson's correlation analysis and the phylogenetic comparative method. Correlations at family level between mean annual temperature and wood density, compression strength, cross‐section hardness, modulus of elasticity and volumetric shrinkage coefficient became significant after correction for phylogenetic influences. Main conclusions Phylogeny interacted with the environment in shaping the spatial patterns of wood traits of trees across China because most wood properties showed strong phylogenetic conservatism and thus affected environmental tolerances and distributions of tree species. Mean annual precipitation was a key environmental factor explaining the spatial patterns of wood traits. Our study provides valuable insights into the geographical patterns in productivity, distribution and ecological strategy of trees linking to wood traits.  相似文献   

20.
Biodiversity is structured by multiple mechanisms that are dependent, at least in part, on ecological similarities and differences among species. Integrating traits and phylogenies in diversity metrics may provide deeper insight into community assembly processes across spatial scales. However, different traits are influenced by processes at different spatial scales, and it is not clear how trait‐spatial scale mismatches skew our ability to detect assembly patterns. An additional complexity is how phylogenetic distances, which might capture unmeasured traits, reflect spatially dependent processes. Here we analyze a freshwater zooplankton dataset from 91 ponds and show that different traits are associated with processes at different spatial scales. We first assessed the response of individual traits to processes at both α‐ and β‐scales, and then quantified the power of different combinations of traits and phylogenetic distances to reveal environmental and spatial drivers of α‐ and β‐diversity. We found that explanatory power was maximised when we accounted for environmental and spatial drivers with single, but different traits for α‐ and β‐diversity. Using the most appropriate trait for each spatial scale outperformed phylogenetic information, but phylogenetic information outperformed the same traits when these were used at the wrong spatial scale, and all outperformed taxonomic analyses that ignore trait and phylogenetic information. We demonstrate that accounting for species’ similarities and differences provides important information about dominant assembly mechanisms at different spatial scales, and that phylogeny is especially useful when measured traits are uninformative at a given spatial scale or when there is lack of trait data. Our study also indicates, however, that trait‐scale mismatches among phylogenetically conserved traits may affect the performance of phylogenetic indices compared to indices that account only for the best single trait at each spatial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号