首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Four flourescein isothiocyanate (FITC) derivatives of Naja naja siamemsis 3 neurotoxin (alpha-toxin), labeled at the epsilon-amino groups of Lys-23, Lys-35, Lys-49, or Lys-69, and a tetramethylrhodamine isothiocyanate (TRITC) derivative, labeled at epsilon-amino group of Lys-23, were prepared and used to analyze the orientation of cobra alpha-toxin on the nicotinic acetylcholine receptor (AcChR) relative to both the plane of the membrane and the central ion channel. Fluorescence-quenching studies of the AcChR-bound FITC derivatives indicated significant solute accessibility to each site of labeling and suggested that none of the sites of FITC labeling is included in the binding surface of the alpha-toxin. Labeling of Lys-23 with TRITC did not affect the affinity of the alpha-toxin toward the AcChR and confirmed, contrary to some previous reports, a minimal role of Lys-23 in the binding surface of the alpha-toxin. Measurements of energy transfer between the lipid-membrane surface and the sites of labeling on receptor-bound alpha-toxin derivatives show that the relative distances of closest approach between the surface of the lipid membrane domain and the sites of labeling are in the order Lys-23 less than or equal to Lys-49 less than Lys-35 less than or equal to Lys-69. Energy transfer between AcChR tryptophans and the sites of labeling of bound derivatives was about 50% greater to Lys-49 than to Lys-23, Lys-35, or Lys-69, suggesting that Lys-49 is closer to receptor tryptophans and to the center of the extracellular domain of the receptor than Lys-23, Lys-35, or Lys-69. Combined with previous observations that the tip of the central loop of the alpha-toxin directly interacts with the AcChR, the above results suggest a model of the approximate orientation of the snake neurotoxins on the receptor. This model shows the tip of the central loop of the toxin directly interacting with the receptor surface and the major axis of the neurotoxin tilting from a perpendicular projection from the membrane. The surface of the alpha-toxin that includes Lys-23 projects away from the central ion channel and the surface that includes Lys-35 and Lys-69 faces the ion channel.  相似文献   

2.
Thermal perturbation techniques have been used to probe structural features of the nicotinic acetylcholine receptor (AcChR). The information obtained from differential scanning calorimetry (DSC) of AcChR membranes (M.C. Farach and M. Martinez-Carrion (1983) J. Biol. Chem. 258, 4176) in the absence and in the presence of cholinergic ligands and local anesthetics, is comparable to that obtained from a simpler technique of heat inactivation of the alpha-bungarotoxin (alpha-Bgt) binding sites on the AcChR protein in similar samples. When AcChR membranes are heated at approximately 1 degree C/min, heat inactivation of toxin binding sites has a characteristic T50 value (temperature at which 50% of the initial capacity to bind alpha-Bgt remains) of approximately 60 degrees C. When heated at a constant temperature during increasing periods of time, the rate at which heat inactivation occurs is also characteristic of the temperature chosen for the experiment. The above thermal parameters are also sensitive to perturbation of the AcChR membrane matrix by the presence of subsolubilizing concentrations of detergents. Moreover, elimination of detergents by dialysis allows us to evaluate the reversibility or irreversibility of AcChR thermal destabilization induced by detergents or other membrane perturbants. Under the experimental conditions used, structural destabilization induced by octylglucoside or cholate can be fully reversed by detergent dialysis, while that exerted by deoxycholate cannot. "Thermal gel" analysis of the aggregation of AcChR subunits induced by heat (G. Soler, J. R. Mattingly, and M. Martinez-Carrion (1984) Biochemistry 23, 4630) has also been used to assess the effects of detergent presence on the AcChR protein. When deoxycholate is used as the perturbing agent, there is a particularly effective sulfhydryl-mediated aggregation of the gamma-delta subunit group, which appears to correlate with the irreversible destabilization of alpha-Bgt binding sites induced by that detergent.  相似文献   

3.
In the native, membrane-bound form of the nicotinic acetylcholine receptor (M-AcChR) the two sites for the cholinergic antagonist alpha-bungarotoxin (alpha-BGT) have different binding properties. One site has high affinity, and the M-AcChR/alpha-BGT complexes thus formed dissociate very slowly, similar to the complexes formed with detergent-solubilized AcChR (S-AcChR). The second site has much lower affinity (KD approximately 59 +/- 35 nM) and forms quickly reversible complexes. The nondenaturing detergent Triton X-100 is known to solubilize the AcChR in a form unable, upon binding of cholinergic ligands, to open the ion channel and to become desensitized. Solubilization of the AcChR in Triton X-100 affects the binding properties of this second site and converts it to a high-affinity, slowly reversible site. Prolonged incubation of M-AcChR at 4 degrees C converts the low-affinity site to a high-affinity site similar to those observed in the presence of Triton X-100. Although the two sites have similar properties when the AcChR is solubilized in Triton X-100, their nonequivalence can be demonstrated by the effect on alpha-BGT binding of concanavalin A, which strongly reduces the association rate of one site only. The Bmax of alpha-BGT to either Triton-solubilized AcChR or M-AcChR is not affected by the presence of concanavalin A. Occupancy of the high-affinity, slowly reversible site in M-AcChR inhibits the Triton X-100 induced conversion to irreversibility of the second site. At difference with alpha-BGT, the long alpha-neurotoxin from Naja naja siamensis venom (alpha-NTX) binds with high affinity and in a very slowly reversible fashion to two sites in the M-AcChR (Conti-Tronconi & Raftery, 1986). We confirm here that Triton-solubilized AcChR or M-AcChR binds in a very slowly reversible fashion the same amount of alpha-NTX.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cell-size, giant liposomes have been formed by submitting a mixture of asolectin lipid vesicles and native membranes from Torpedo, highly enriched in acetylcholine receptor (AcChR), to a partial dehydration/rehydration cycle [Criado, M., & Keller, B. U. (1987) FEBS Lett. 224, 172-176]. Giant liposomes can be prepared in bulk quantities, in the absence of potentially damaging detergents or organic solvents, and their formation is mediated by membrane fusion phenomena. In fact, fluorescence microscopy and freeze-fracture data indicate that protein and lipid components of the initial membranes and lipid vesicles are homogenously distributed in the resulting liposomes. Giant liposomes containing AcChR have been used as a model to evaluate whether this system can be used to monitor the activity of ionic channels by using high-resolution, patch-clamp techniques. Excised liposome patches in an "inside-out" configuration have been used in this work. We find that the most frequent pattern of electrical activity in response to the presence of acetylcholine in the patch pipet corresponds to a cation-specific channel exhibiting a dominant conductance level and a sublevel of approximately 78 and 25 pS, respectively. Such channel activity exhibits the pharmacological specificity, ion channel activation, ion selectivity, and desensitization properties expected from native Torpedo AcChR. Thus, it appears that the giant liposome technique offers a distinct advantage over other reconstitution procedures in that it provides a unique opportunity to undertake simultaneous biochemical, morphological, and electrophysiological studies of the incorporated ionic channel proteins.  相似文献   

5.
We have studied alkylation of the membrane-bound acetylcholine receptor (AcChR) from Torpedo californica electric organ by the cholinergic agonist bromo-acetylcholine (BrAcCh). Following reduction of the AcChR with dithiothreitol (DTT) under strictly controlled conditions, a single class of binding sites was covalently labeled by BrAcCh. The extent of alkylation was dependent on the concentration of both DTT and BrAcCh and reached a maximum when a number of sites equivalent to the number of alpha-bungarotoxin (alpha-BTx) binding sites were labeled. The reaction with BrAcCh was completely inhibited by saturating concentrations of alpha-BTx. On the contrary, complete alkylation of the AcChR with [3H]BrAcCh consistently inhibited only approximately 50% of alpha-BTx binding. The effects of DTT reduction and subsequent BrAcCh alkylation on the cation-gating properties of the AcChR were investigated in rapid kinetic experiments. DTT reduction resulted in a slight decrease in the maximum cation flux and a small shift in the effective dissociation constant to higher acetylcholine (AcCh) concentration. The flux response was completely inhibited by maximal alkylation of the membrane vesicles by BrAcCh. A low-affinity binding site for AcCh, which is likely to be important in AcChR activation, has been revealed for T. californica AcChR by studying the effects of cholinergic ligands on the fluorescence of a probe, 4-[(iodoacetoxy)ethylmethylamino]-7-nitro-2,1,3-benzoxadiazole (IANBD), covalently bound to the AcChR protein. Maximal labeling by BrAcCh did not affect the binding of AcCh to the low-affinity binding site, as monitored by changes in the fluorescence of this probe. This low-affinity binding site must therefore be distinct from the site labeled by BrAcCh. The results strongly support the notion that the nicotinic AcChR contains multiple binding sites for cholinergic ligands.  相似文献   

6.
T Heidmann  J P Changeux 《Biochemistry》1986,25(20):6109-6113
The kinetics of covalent labeling of the alpha, beta, gamma, and delta chains of the acetylcholine receptor (AcChR) from Torpedo marmorata by the noncompetitive blocker [3H]chlorpromazine ([3H]CPZ) are investigated by using rapid mixing photolabeling techniques. In an initial study [Heidmann, T., & Changeux, J. P. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1897-1901], it was shown that the rate of [3H]CPZ labeling increases 100-1000-fold upon simultaneous addition of nicotinic agonists to the AcChR and that prior addition of these agonists abolishes the effect. The data were interpreted in terms of the rapid labeling of the transient active state of the AcChR where the ion channel is in its open configuration. This interpretation was recently challenged [Cox, R. N., Kaldany, R. R. J., Di Paola, M., & Karlin, A. (1985) J. Biol. Chem. 260, 7186-7193] on the ground of studies with a different noncompetitive blocker, [3H]quinacrine azide, and the suggestion was made that this compound labels the rapidly desensitized closed channel conformation of the AcChR. In this paper it is shown that the rate of rapid labeling of the AcChR by [3H]CPZ decreases to negligible values upon exposure of the AcChR to nicotinic agonists, in the 100-500-ms time range. The absolute values of the rate constants of this decrease (10-15 s-1 for saturating concentrations of acetylcholine and carbamoylcholine) and their variation with agonist concentration (apparent dissociation constants of 40 microM and 0.4 mM for acetylcholine and carbamoylcholine, respectively) are those expected for the rapid desensitization of the AcChR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The dimeric and monomeric forms of the acetylcholine receptor from Torpedo californica electroplax have been purified in the presence of lipids and reconstituted. A spectroscopic method was applied to study the rapid kinetics of cation transport mediated by each of the reconstituted AcChR oligomers. Both the AcChR dimer and monomer responded to carbamylcholine by mediating cation transport on the time scale of a few milliseconds. The responses to carbamylcholine were blocked by histrionicotoxin and by desensitization, demonstrating that both forms manifest pharmacological properties observed in vivo. Analysis of the fast ion transport produced by various agonist concentrations yielded estimated rates of transport through a single receptor channel. These were comparable for the monomer and dimer and in agreement with those obtained for a preparation containing a mixture of both oligomers.  相似文献   

8.
A triple-state quadrupole or a tandem quadrupole Fourier-transform mass spectrometer was used to detect and sequence the peptides released by proteolytic cleavage of the acetylcholine receptor (AcChR) from Torpedo californica electroplax. Fragments in mass range up to 3479 daltons were characterized on the above instrumentation and used to determine proteolytically accessible sites on the receptor. These data were consistent with the cleavage points determined for membrane-bound fragments of the same AcChR samples using gas-phase microsequencing. Each subunit of the receptor is readily cleaved near the C-terminus in the region between the proposed transmembrane hydrophobic alpha-helices MIII and MIV. This region includes the putative regulatory phosphorylation sites and the amphipathic alpha-helix. Cleavage is also observed in the N-terminal domain, but occurs much more slowly than in the C-terminal region. No cleavage was detected in the middle third of the receptor, which includes the proposed transmembrane alpha-helices MI and MII. An evaluation of these data in terms of the transmembrane topography of the AcChR peptides is consistent with a synaptic or extracellular disposition for the region between MIII and MIV.  相似文献   

9.
A fast kinetics, spectroscopic technique has been applied to the study of the transient cation flux associated to the binding of cholinergic agonist to native acetylcholine receptor (AcChR)-rich membrane vesicles in presence of anti-AcChR antibodies. The technique is based on the collisional quenching of an intravesicularly trapped fluorophore by externally added T1+ which substitutes for physiologically occurring cations. Presence of polyclonal Fab fragments from goat anti-AcChR antibodies bound to the membrane AcChR promotes a 80-90% inhibition on the observed rate constants of T1+ influx. The observed inhibition process appears to follow a non-competitive pattern between antibody and cholinergic ligand binding, suggesting that in the AcChR protein the antigenic sites responsible for ion translocation may be other than those involved in ligand binding.  相似文献   

10.
In receptor-rich vesicles isolated from Torpedo, paramagnetic or fluorescent phosphonium ions bind to both the acetylcholine receptor (AcChR) and the receptor membrane. When added to receptor vesicles, two to three phosphoniums undergo a slow time-dependent binding to the AcChR. The presence of agonist increases the rate but not the extent of binding of the alkylphosphonium nitroxides. Approximately one phosphonium per receptor can be displaced by the addition of saturating concentrations of the high-affinity histrionicotoxin derivative isodihydrohistrionicotoxin or by the addition of phencyclidine or quinacrine mustard. In addition, preincubation of the receptor with these channel blockers prevents approximately one phosphonium from binding to the receptor. When a series of alkyltriphenylphosphonium ions was studied, it was found that the rate of phosphonium binding to the receptor decreased with increasing probe hydrophobicity. This appears to be a function of the partitioning of the probe between membrane and aqueous phases. The phosphonium ions used here promote desensitization of the receptor, as judged by the binding rate of the fluorescent agonist NBDA-C5-acylcholine or alpha-bungarotoxin. Preincubation of the receptor with isodihydrohistrionicotoxin virtually eliminates the phosphonium-mediated desensitization. The rates of the phosphonium-mediated desensitization also appear to be dependent upon the phase partitioning of the probe. These results strongly suggest that the binding sites for the phosphonium ion (and the high-affinity histrionicotoxin blocking site) are accessible only through the aqueous phase. The phosphonium binding and agonist-induced transitions observed here are not observed with a negative hydrophobic ion probe, or a negative surface amphiphile, indicating that modifications in membrane electrostatics do not contribute to the observed changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Torpedo californica acetylcholine receptor (AcChR) enriched, sealed vesicles have been specifically labeled on the cytoplasmic surface with pyridoxal 5′-phosphate (Perez-Ramirez, B., and Martinez-Carrion, M., 1989,Biochemistry 28, 5034–5040). After chromatography of the peptide fragments produced by tryptin digestion of labeled AcChR, several fractions containing the phosphopyridoxyl label were obtained. Edman degradation identified one of the fractions, with sequence SRSELMFEKQSER, as corresponding to residues 377–389 in theδ subunit (primary structure). The latter must be a cytoplasmic region of this transmembranous protein, and residueδK385 must reside in a water-soluble exposed domain of the cytosolic side of the membrane. Introduction of phosphopyridoxyl residues allows for their potential use as probes of conformational changes in the cytosolic surface of the receptor molecule.  相似文献   

12.
The choline homologue 3-[(trimethylammonio)methyl]catechol (TMC) has been synthesized, and the controllable features of its complex oxidation have been examined spectroscopically and correlated with its toxin binding inactivating reactions with the acetylcholine receptor (AcChR) from Torpedo californica electroplax. Affinity-dependent reactions of early intermediates in the oxidation of TMC are suggested to intercede covalently in this inactivation. At pH 7.4, where the oxidative polymerization of catechols proceeds spontaneously, pyrocatechol produced no effect on the toxin binding function of AcChR, whereas comparable concentrations of TMC led to inactivation of half of all available sites. Lower concentrations of TMC converted via oxidation with ceric salts to an in situ mixture of monohydroxylated catechols were shown to be effective in short-term incubations in inactivating approximately half of the toxin binding sites by covalent labeling of the receptor. Mixtures of dihydroxycatechol intermediates, hydroxy-p-quinones, and polymeric products led to nonspecific toxin binding site inactivation of AcChR in excess of half of all available sites. Collectively, the results suggest that both covalent labeling and oxygen reduction product inactivating mechanisms are operative in these model macromolecular site reactions and that catechol-containing affinity reagents may be useful in elucidating the molecular features of sites to which they are directed.  相似文献   

13.
Torpedo acetylcholine receptor (AcChR) exists predominantly as dimers, formed by two monomers held together by a disulfide bridge(s). The dimers are easily cleaved to monomers by reducing agents. 2-mercaptoethanesulfonic acid is shown to be a membrane-impermeant reducing agent which cleaves receptor dimers when it is present only on the outside of intact membrane vesicles. There is no increase in the extent of cleavage when 2-mercaptoethanesulfonic acid is also loaded inside the vesicles. Therefore the disulfide bond(s) involved in the dimerization of the Torpedo acetylcholine receptor is (are) formed by cysteine residues which are exposed on the extracellular side of the membrane.  相似文献   

14.
A novel procedure has been developed to specifically label the cytoplasmic domains of transmembrane proteins with the aldehyde pyridoxal 5-phosphate (PLP). Torpedo californica acetylcholine receptor (AcChR) vesicles were loaded with [3H]pyridoxine 5-phosphate ([3H]PNP) and pyridoxine-5-phosphate oxidase, followed by intravesicular enzymatic oxidation of [3H]PNP at 37 degrees C in the presence of externally added cytochrome c as a scavenger of possible leaking PLP product. The resulting Schiff's bases between PLP and AcChR amino groups were reduced with NaCNBH3, and the pyridoxylated proteins were analyzed by fluorography. The four receptor subunits were labeled whether the reaction was carried out on the internal surface or separately designed to mark the external one. On the other hand, the relative pyridoxylation of the subunits differed in both cases, reflecting differences in accessible lysyl residues in each side of the membrane. Proteinase K treatment of labeled AcChR vesicles generated a peptide of 13 kDa that could be detected with anti-PLP antibodies only when the pyridoxylation was carried out on the internal surface of the vesicles. Even though there are no large differences in the total lysine content among the subunits and there are two copies of the alpha-subunit, internal surface labeling by PLP was greatest for the highest molecular weight (delta) subunit, reinforcing the concept that the four receptor subunits are transmembranous and may protrude into the cytoplasmic face in a fashion [Strader, C. D., & Raftery, M. A. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5807-5811] that is proportional to their subunit molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
H P Moore  M A Raftery 《Biochemistry》1979,18(10):1862-1867
The interaction of a cholinergic depolarizing agent, bromoacetylcholine, with acetylcholine receptor (AcChR) enriched membrane fragments and Triton-solubilized, purified AcChR from Torpedo californica has been studied. The reagent bound to membrane-bound AcChR reversibly with an apparent dissociation constant of 16 +/- 1 nM at equilibrium. This 600-fold higher affinity for the receptor than found from physiological studies [Kact congruent to 10 micrometers; Karlin, A. (1973) Fed. Proc. Fed. Am. Soc. Exp. Biol. 32, 1847--1853] can be attributed to a ligand-induced affinity change of the membrane-bound receptor upon preincubation with bromoacetylcholine. At equilibrium [3H]bromoacetylcholine, like acetylcholine, bound to half the number of alpha-bungarotoxin sites present in the preparation without apparent positive cooperativity, and this binding was competitively inhibited by acetylcholine. In the presence of dithiothreitol, [3H]bromoacetylcholine irreversibly alkylated both membrane-bound and solubilized, purified acetylcholine receptor, with a stoichiometry identical with that for reversible binding. NaDodSO4-polyacrylamide gel electrophoresis of the labeled acetylcholine receptor showed that only the 40 000-dalton subunit contained the label. From these results it is concluded that the 40 000-dalton subunit represents a major component of the agonist binding site of the receptor.  相似文献   

16.
This study is concerned with the characterization of the morphology of the calcium release channel of sarcoplasmic reticulum (SR) from fast-twitch skeletal muscle, which is involved in excitation-contraction coupling. We have previously purified the ryanodine receptor and found it to be equivalent to the feet structures, which are involved, in situ, in the junctional association of transverse tubules with terminal cisternae of SR. The receptor is an oligomer of a single high molecular weight polypeptide and when incorporated into phospholipid bilayers, has channel conductance which is characteristic of calcium release in terminal cisternae of SR. The purified channel can be observed by electron microscopy using different methods of sample preparation, with complementary views being observed by negative staining, double staining, thin section and rotary shadowing electron microscopy. Three views can be observed and interpreted: (a) a square face which, in situ, is junctionally associated with the transverse tubule or junctional face membrane; (b) a rectangle equivalent to the side view; and (c) a diamond shape equivalent to the side view, of which the base portion appears to be equivalent to the transmembrane segment. Negative staining reveals detailed substructure of the channel. A computer averaged view of the receptor displays fourfold symmetry and ultrastructural detail. The dense central mass is divided into four domains with a 2-nm hole in the center, and is enclosed within an outer frame which has a pinwheel appearance. Double staining shows substructure of the square face in the form of parallel linear arrays (six/face). The features of the isolated receptor can be correlated with the structure observed in terminal cisternae vesicles. Sections tangential to the junctional face membrane reveal that the feet structures (23-nm squares) overlap so as to enclose smaller square spaces of approximately 14 nm/side. We suggest that this is equivalent to the transverse tubule face and that the terminal cisternae face is smaller (approximately 17 nm/face) and has larger alternating spaces as a consequence of the tapered sides of the foot structures. Image reconstruction analysis appears to be feasible and should provide the three-dimensional structure of the channel.  相似文献   

17.
Abstract

The nicotinic acetylcholine receptor (AcChR) has been purified from both the electric organ and the muscle of the fish Electrophorus electricus. Upon SDS gel electrophoresis muscle AcChRs appeared to contain four main polypeptides whose molecular weights were similar but not identical to the molecular weights of the four peptides present in the electric organ AcChR. Each of these peptides has been isolated and their amino-terminal sequences have been determined. The AcChRs from muscle were found to be composed of four homologous proteins of apparent molecular weight 40,500, 50,000, 56,000 and 63,000, respectively. The subunit of Mr 40,500 is present in two copies for each AcChR molecule, while the other three components are present in one copy. No difference was found between the sequenced segments of corresponding subunits from muscle and from electric organ AcChR, suggesting that AcChRs in different tissues of the same animal are products of identical genes The Electrophorus AcChR subunits are highly homologous with the corresponding subunits of Torpedo californiea AcChR.  相似文献   

18.
Acetylcholine receptor (AcChR) enriched membrane fragments from Torpedo californica electroplax were labeled by in situ photogenerated nitrenes from a hydrophobic fluorescent probe, pyrene-1-sulfonyl azide. Preferential photolabeling of membrane proteins, mainly AcChR, has been achieved and there is a pronounced exposure of the 48,000 and 55,000 molecular weight subunits of AcChR to the lipid environment of the membrane core. Covalent attachment of the photogenerated fluorescence probe does not perturb the α-neurotoxins' binding properties of membrane-bound AcChR or the desensitization kinetics induced by prolonged exposures to cholinergic agonists. Non-covalent photoproducts can be conveniently removed from labeled membrane preparations by exchange into lipid vesicles prepared from electroplax membrane lipids. Fluorescence features of model pyrene sulfonyl amide derivatives, such as fine vibrational structure of emission spectra or fluorescence lifetimes, are highly sensitive to the solvent milieu. The covalently bound probe shows similar fluorescence properties in situ. PySA photoproducts have great potential to spectroscopically monitor neurotransmitter induced events on selected AcChR subunits exposed to the hydrophobic environment of membranes.  相似文献   

19.
Protein phosphorylation of nicotinic acetylcholine receptors   总被引:5,自引:0,他引:5  
The nicotinic acetylcholine receptor (nAcChR) is a ligand-gated ion channel found in the postsynaptic membranes of electric organs, at the neuromuscular junction, and at nicotinic cholinergic synapses of the mammalian central and peripheral nervous system. The nAcChR from Torpedo electric organ and mammalian muscle is the most well-characterized neurotransmitter receptor in biology. It has been shown to be comprised of five homologous (two identicle) protein subunits (alpha 2 beta gamma delta) that form both the ion channel and the neurotransmitter receptor. The nAcChR has been purified and reconstituted into lipid vesicles with retention of ion channel function and the primary structure of all four protein subunits has been determined. Protein phosphorylation is a major posttranslational modification known to regulate protein function. The Torpedo nAcChR was first shown to be regulated by phosphorylation by the discovery that postsynaptic membranes contain protein kinases that phosphorylate the nAcChR. Phosphorylation of the nAcChR has since been shown to be regulated by the cAMP-dependent protein kinase, protein kinase C, and a tyrosine-specific protein kinase. Phosphorylation of the nAcChR by cAMP-dependent protein kinase has been shown to increase the rate of nAcChR desensitization, the process by which the nAcChR becomes inactivated in the continued presence of agonist. In cultured muscle cells, phosphorylation of the nAcChR has been shown to be regulated by cAMP-dependent protein kinase, a Ca2+-sensitive protein kinase, and a tyrosine-specific protein kinase. Stimulation of the cAMP-dependent protein kinase in muscle also increases the rate of nAcChR desensitization and correlates well with the increase in nAcChR phosphorylation. The AcChR represents a model system for how receptors and ion channels are regulated by second messengers and protein phosphorylation.  相似文献   

20.
EAMG has been induced in a wide variety of animals by using AcChR purified from electric organ and muscle sources. Electrophoresis of SDS polyacrylamide gels heavily loaded with purified AcChR often reveals the presence of minor contaminants. To test whether these contaminants or any other components present in Torpedo californica AcChR preparations could induce EAMG, solubilized Torpedo membrane fragments were depleted of AcChR by passage over an alpha-BuTx-conjugated resin and then injected into Lewis rats in an attempt to induce EAMG. The results demonstrated that some of the minor contaminants present in purified AcChR preparations were antigenic, but EAMG could not be induced with preparations enriched in these contaminants or containing other Torpedo non-AcChR components and lacking AcChR. The conclusion drawn from this study was that the acetylcholine receptor was the only component present in Triton X-100-solubilized Torpedo californica membrane fragments that could induce EAMG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号