首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Connexin mimetic peptides are widely used to assess the contribution of nonjunctional connexin channels in several processes, including ATP release. These peptides are derived from various connexin sequences and have been shown to attenuate processes downstream of the putative channel activity. Yet so far, no documentation of effects of peptides on connexin channels has been presented. We tested several connexin and pannexin mimetic peptides and observed attenuation of channel currents that is not compatible with sequence specific actions of the peptides. Connexin mimetic peptides inhibited pannexin channel currents but not the currents of the channel formed by connexins from which the sequence was derived. Pannexin mimetic peptides did inhibit pannexin channel currents but also the channels formed by connexin 46. The same pattern of effects was observed for dye transfer, except that the inhibition levels were more pronounced than for the currents. The channel inhibition by peptides shares commonalities with channel effects of polyethylene glycol (PEG), suggesting a steric block as a mechanism. PEG accessibility is in the size range expected for the pore of innexin gap junction channels, consistent with a functional relatedness of innexin and pannexin channels. mimetic peptide; polyethylene glycol; calcium wave  相似文献   

2.
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca2+ concentration and release of diverse metabolites (e.g., NAD+ and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.  相似文献   

3.
There is a dearth of chemical inhibitors of connexin-mediated intercellular communication. The advent of short “designer” connexin mimetic peptides has provided new tools to inhibit connexin channels quickly and reversibly. This perspective describes the development of mimetic peptides, especially Gap 26 and 27 that are the most popular and correspond to specific sequences in the extracellular loops of connexins 37, 40 and 43. Initially they were used to inhibit gap-junctional coupling in a wide range of mammalian cells and tissues. Currently, they are also being examined as therapeutic agents that accelerate wound healing and in the early treatment of spinal cord injury. The mimetic peptides bind to connexin hemichannels, influencing channel properties as shown by lowering of electrical conductivity and potently blocking the entry of small reporter dyes and the release of ATP by cells. A mechanism is proposed to help explain the dual action of connexin mimetic peptides on connexin hemichannels and gap-junctional coupling.  相似文献   

4.
Probenecid is a well-established drug for the treatment of gout and is thought to act on an organic anion transporter, thereby affecting uric acid excretion in the kidney by blocking urate reuptake. Probenecid also has been shown to affect ATP release, leading to the suggestion that ATP release involves an organic anion transporter. Other pharmacological evidence and the observation of dye uptake, however, suggest that the nonvesicular release of ATP is mediated by large membrane channels, with pannexin 1 being a prominent candidate. In the present study we show that probenecid inhibited currents mediated by pannexin 1 channels in the same concentration range as observed for inhibition of transport processes. Probenecid did not affect channels formed by connexins. Thus probenecid allows for discrimination between channels formed by connexins and pannexins.  相似文献   

5.
Pannexins, a class of membrane channels, bear significant sequence homology with the invertebrate gap junction proteins, innexins and more distant similarities in their membrane topologies and pharmacological sensitivities with the gap junction proteins, connexins. However, the functional role for the pannexin oligomers, or pannexons, is different from connexin oligomers, the connexons. Many pannexin publications have used the term "hemichannels" to describe pannexin oligomers while others use the term "channels" instead. This has led to confusion within the literature about the function of pannexins that promotes the idea that pannexons serve as gap junction hemichannels and thus have an assembly and functional state as gap junctional intercellular channels. Here we present the case that unlike the connexin gap junction intercellular channels, so far, pannexin oligomers have repeatedly been shown to be channels that are functional in single membranes, but not as intercellular channel in appositional membranes. Hence, they should be referred to as channels and not hemichannels. Thus, we advocate that in the absence of firm evidence that pannexins form gap junctions, the use of the term "hemichannel" be discontinued within the pannexin literature.  相似文献   

6.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP(3) elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

7.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

8.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3 elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

9.
Many cell signalling pathways are driven by changes in cytosolic calcium. We studied the effects of a range of inhibitors of connexin channels on calcium signalling in cardiac cells and HeLa cells expressing connexins. Gap 26 and 27, peptides that mimic short sequences in each of the extracellular loops of connexin 43, and anti-peptide antibodies generated to extracellular loop sequences of connexins, inhibited calcium oscillations in neonatal cardiac myocytes, as well as calcium transients induced by ATP in HL-1 cells originating from cardiac atrium and HeLa cells expressing connexin 43 or 26. Comparison of single with confluent cells showed that intracellular calcium responses were suppressed by interaction of connexin mimetic peptides and antibodies with hemichannels present on unapposed regions of the plasma membrane. To investigate how inhibition of hemichannels in the plasma membrane by the applied reagents was communicated to calcium store operation in the endoplasmic reticulum, we studied the effect of Gap 26 on calcium entry into cells and on intracellular IP3 release; both were inhibited by Gap 26. Calcium transients in both connexin 43- and connexin 26-expressing HeLa cells were inhibited by the peptides suggesting that the extended cytoplasmic carboxyl tail domain of larger connexins and their interactions with intracellular scaffolding/auxiliary proteins were unlikely to feature in transmitting peptide-induced perturbations at hemichannels in the plasma membrane to IP3 receptor channel central to calcium signalling. The results suggest that calcium levels in a microenvironment functionally connecting plasma membrane connexin hemichannels to downstream IP3-dependent calcium release channels in the endoplasmic reticulum were disrupted by the connexin mimetic peptide, although implication of other candidate hemichannels cannot be entirely discounted. Since calcium signalling is fundamental to the maintenance of cellular homeostasis, connexin hemichannels emerge as therapeutic targets open to manipulation by reagents interacting with external regions of these channels.  相似文献   

10.
《FEBS letters》2014,588(8):1372-1378
Connexin hemichannels are postulated to form a cell permeabilization pore for the uptake of fluorescent dyes and release of cellular ATP. Connexin hemichannel activity is enhanced by low external [Ca2+]o, membrane depolarization, metabolic inhibition, and some disease-causing gain-of-function connexin mutations. This paper briefly reviews the electrophysiological channel conductance, permeability, and pharmacology properties of connexin hemichannels, pannexin 1 channels, and purinergic P2X7 receptor channels as studied in exogenous expression systems including Xenopus oocytes and mammalian cell lines such as HEK293 cells. Overlapping pharmacological inhibitory and channel conductance and permeability profiles makes distinguishing between these channel types sometimes difficult. Selective pharmacology for Cx43 hemichannels (Gap19 peptide), probenecid or FD&C Blue #1 (Brilliant Blue FCF, BB FCF) for Panx1, and A740003, A438079, or oxidized ATP (oATP) for P2X7 channels may be the best way to distinguish between these three cell permeabilizing channel types. Endogenous connexin, pannexin, and P2X7 expression should be considered when performing exogenous cellular expression channel studies. Cell pair electrophysiological assays permit the relative assessment of the connexin hemichannel/gap junction channel ratio not often considered when performing isolated cell hemichannel studies.  相似文献   

11.
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.  相似文献   

12.
Gap junction channels facilitate the intercellular exchange of ions and small molecules. While this process is critical to all multicellular organisms, the proteins that form gap junction channels are not conserved. Vertebrate gap junctions are formed by connexins, while invertebrate gap junctions are formed by innexins. Interestingly, vertebrates and lower chordates contain innexin homologs, the pannexins, which also form channels, but rarely (if ever) make intercellular channels. While the connexin and the innexin/pannexin polypeptides do not share significant sequence similarity, all three of these protein families share a similar membrane topology and some similarities in quaternary structure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

13.
Control of blood flow distribution and tissue homeostasis depend on the tight regulation of and coordination between the microvascular network and circulating blood cells. Channels formed by connexins or pannexins that connect the intra- and extracellular compartments allow the release of paracrine signals, such as ATP and prostaglandins, and thus play a central role in achieving fine regulation and coordination of vascular function. This review focuses on vascular connexin hemichannels and pannexin channels. We review their expression pattern within the arterial and venous system with a special emphasis on how post-translational modifications by phosphorylation and S-nitrosylation of these channels modulate their function and contribute to vascular homeostasis. Furthermore, we highlight the contribution of these channels in smooth muscle cells and endothelial cells in the regulation of vasomotor tone as well as how these channels in endothelial cells regulate inflammatory responses such as during ischemic and hypoxic conditions. In addition, this review will touch on recent evidence implicating a role for these proteins in regulating red blood cell and platelet function.  相似文献   

14.
Vertebrates express two families of gap junction proteins: the well-characterized connexins and the pannexins. In contrast to connexins, pannexins do not appear to form gap junction channels but instead function as unpaired membrane channels. Pannexins have no sequence homology to connexins but are distantly related to the invertebrate gap junction proteins, innexins. Despite the sequence diversity, pannexins and connexins form channels with similar permeability properties and exhibit similar membrane topology, with two extracellular loops, four transmembrane (TM) segments, and cytoplasmic localization of amino and carboxy termini. To test whether the similarities extend to the pore structure of the channels, pannexin 1 (Panx1) was subjected to analysis with the substituted cysteine accessibility method (SCAM). The thiol reagents maleimidobutyryl-biocytin and 2-trimethylammonioethyl-methanethiosulfonate reacted with several cysteines positioned in the external portion of the first TM segment (TM1) and the first extracellular loop. These data suggest that portions of TM1 and the first extracellular loop line the outer part of the pore of Panx1 channels. In this aspect, the pore structures of Panx1 and connexin channels are similar. However, although the inner part of the pore is lined by amino-terminal amino acids in connexin channels, thiol modification was detected in carboxyterminal amino acids in Panx1 channels by SCAM analysis. Thus, it appears that the inner portion of the pores of Panx1 and connexin channels may be distinct.  相似文献   

15.
White TW  Wang H  Mui R  Litteral J  Brink PR 《FEBS letters》2004,577(1-2):42-48
Unlike many other ion channels, unrelated gene families encode gap junctions in different animal phyla. Connexin and pannexin genes are found in deuterostomes, while protostomal species use innexin genes. Connexins are often described as vertebrate genes, despite the existence of invertebrate deuterostomes. We have cloned connexin sequences from an invertebrate chordate, Halocynthia pyriformis. Invertebrate connexins shared 25-40% sequence identity with human connexins, had extracellular domains containing six invariant cysteine residues, coding regions that were interrupted by introns, and formed functional channels in vitro. These data show that gap junction channels based on connexins are present in animals that predate vertebrate evolution.  相似文献   

16.
17.
Several new findings have emphasized the role of neuron-specific gap junction proteins (connexins) and electrical synapses in processing sensory information and in synchronizing the activity of neuronal networks. We have recently shown that pannexins constitute an additional family of proteins that can form gap junction channels in a heterologous expression system and are also widely expressed in distinct neuronal populations in the brain, where they may represent a novel class of electrical synapses. In this study, we have exploited the hemichannel-forming properties of pannexins to investigate their sensitivity to well-known connexin blockers. By combining biochemical and electrophysiological approaches, we report here further evidence for the interaction of pannexin1 (Px1) with Px2 and demonstrate that the pharmacological sensitivity of heteromeric Px1/Px2 is similar to that of homomeric Px1 channels. In contrast to most connexins, both Px1 and Px1/Px2 hemichannels were not gated by external Ca2+. In addition, they exhibited a remarkable sensitivity to blockade by carbenoxolone (with an IC50 of approximately 5 microm), whereas flufenamic acid exerted only a modest inhibitory effect. The opposite was true in the case of connexin46 (Cx46), thus indicating that gap junction blockers are able to selectively modulate pannexin and connexin channels.  相似文献   

18.
Membrane transport is a fundamental means to control basic cellular processes such as apoptosis, inflammation, and neurodegeneration and is mediated by a number of transporters, pumps, and channels. Accumulating evidence over the last half century has shown that a type of so-called “large-pore channel” exists in various tissues and organs in gap-junctional and non-gap-junctional forms in order to flow not only ions but also metabolites such as ATP. They are formed by a number of protein families with little or no evolutionary linkages including connexin, innexin, pannexin, leucine-rich repeat-containing 8 (LRRC8), and calcium homeostasis modulator (CALHM). This review summarizes the history and concept of large-pore channels starting from connexin gap junction channels to the more recent developments in innexin, pannexin, LRRC8, and CALHM. We describe structural and functional features of large-pore channels that are crucial for their diverse functions on the basis of available structures.  相似文献   

19.
Hemichannels are large pore ion channels that in the traditional view are formed when half a gap connexin junction opens to the extracellular space. It is now evident that other ion channel families, including the newly discovered pannexin family can form channels with all the nascent properties of hemichannels. This suggests that hemichannels should now be defined to include members of non-connexin families. Several connexin, and two pannexins are expressed in neurons and astrocytes where they may function in release of ATP and glutamate. Additionally, pannexin-1 appears to play a role in neuronal death. Hemichannels form a novel and unique class of ion channels that likely have diverse physiological and pathophysiological roles in the nervous system.  相似文献   

20.
Hemichannels are large pore ion channels that in the traditional view are formed when half a gap connexin junction opens to the extracellular space. It is now evident that other ion channel families, including the newly discovered pannexin family can form channels with all the nascent properties of hemichannels. This suggests that hemichannels should now be defined to include members of non-connexin families. Several connexin, and two pannexins are expressed in neurons and astrocytes where they may function in release of ATP and glutamate. Additionally, pannexin-1 appears to play a role in neuronal death. Hemichannels form a novel and unique class of ion channels that likely have diverse physiological and pathophysiological roles in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号