首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placebo granules were manufactured by both wet high-shear and fluidized-bed techniques. The granules were compared based on size, shape, surface morphology, and a variety of different flowability measurements. This comparison showed that granule formation and growth were different, with induction growth for high-shear granulation and steady growth for fluidized-bed granulation. Final granules from high-shear granulation were more spherical and dense compared with the irregular granules from fluidized-bed granulation. The high-shear granules demonstrated better overall flow properties.  相似文献   

2.
The aim of the present study was to investigate and compare granule and tablet properties of granules prepared by wet granulation in a rotary processor or a conventional fluid bed. For this purpose the working range of selected process variables was determined and a factorial study with 3 factors (equipment type, filler type, and liquid addition rate) and 1 covariate (fluidizing air flow rate) was performed. Two grades of calcium carbonate with different size and shape characteristics were applied, and the liquid addition and fluidizing air flow rates were investigated in the widest possible range. Dry mixtures of microcrystalline cellulose, polyvinyl povidone, calcium carbonate, and riboflavin, in a 10∶5∶84∶1 ratio, were granulated in both types of equipment. The granulation end point was determined manually in the fluid bed and by torque measurements in the rotary processor. The filler type had a more pronounced effect on granular properties in the fluid bed, but the rotary processor showed a higher dependency on the investigated process variables. The rotary processor gave rise to more dense granules with better flow properties, but the fluid bed granules had slightly better compressional properties. Furthermore, the distribution of a low-dose drug was found to be more homogeneous in the rotary processor granules and tablets. Generally, wet granulation in a rotary processor was found to be a good alternative to conventional fluid bed granulation, especially when cohesive powders with poor flow properties or formulations with low drug content are to be granulated by a fluidizing air technique. Published: March 10, 2006  相似文献   

3.
The objective of this study was to investigate the effect of large granulated lactose carrier particle systems on aerosol performance of dry powder inhaler formulations. Granulated lactose carriers with average sizes ranging from 200 to 1,000 μm were prepared and subsequently fractionated into separate narrow size powders. The fractionated granulated lactose (GL) samples were characterized in terms of size, specific surface area, surface roughness, morphology, density, flowability, and solid-state. The in vitro aerosolization performance was performed on the different size fractions of GL samples from a commercial inhaler device (Aerolizer®) with a model formulation (2% w/w salbutamol sulfate). The cascade impaction parameters employed were 60 or 90 L/min with standard (aperture size, 0.6 mm) or modified piercing holes (aperture size, 1.2 mm) of the inhaler loaded capsules. It was shown that the largest size fraction formulation (850–1000 μm) had a slight improvement in the fine particle fraction (FPF) compared to immediately preceding size fractions, explained by a smaller adhesive force between drug and carrier. Compared to commercial piercing holes, enlarged piercing holes generated a slight decreasing trend of FPF as the lactose powder sizes increased from 200–250 μm to 600–850 μm, perhaps due to the reduced detachment force by flow forces. The size, surface roughness, density, and flowability of lactose carrier as well as device design all contributed to the aerosol dispersion performance of granulated lactose-based adhesive mixtures. It was concluded that poorer or enhanced redispersion performance is not an inherent property to the significantly large size of granulated lactose carriers as previously contended.KEY WORDS: adhesive force, carrier roughness, carrier size, DPI formulations, granulated lactose  相似文献   

4.
The purpose of this research was to evaluate the influence of dry granulation parameters on granule and tablet properties of spray-dried extract (SDE) fromMaytenus ilicifolia, which is widely used in Brazil in the treatment of gastric disorders. The compressional behavior of the SDE and granules of the SDE was characterized by Heckel plots. The tablet properties of powders, granules, and formulations containing a high extract dose were compared. The SDE was blended with 2% magnesium stearate and 1% colloidal silicon dioxide and compacted to produce granules after slugging or roll compaction. The influences of the granulation process and the roll compaction force on the technological properties of the granules were studied. The flowability and density of spray-dried particles were improved after granulation. Tablets produced by direct compression of granules showed lower crushing strength than the ones obtained from nongranulated material. The compressional analysis by Heckel plots revealed that the SDE undergoes plastic deformation with a very low tendency to rearrangement at an early stage of compression. On the other hand, the granules showed an intensive rearrangement as a consequence of fragmentation and rebounding. However, when the compaction pressure was increased, the granules showed plastic deformation. The mean yield pressure values showed that both granulation techniques and the roll compaction force were able to reduce the material's ability to undergo plastic deformation. Finally, the tablet containing a high dose of granules showed a close dependence between crushing strength and the densification degree of the granules (ie, roll compaction force). Published: October 14, 2005  相似文献   

5.
A mathematical model of high shear wet granulation is proposed, where granule breakage, and not growth, is the dominant process. The energy required for granule breakage is assumed to be provided by the impact of granules between themselves and the granulator parts, and the extent of granule breakage determined by the balance between the impactenergy and the work of adhesion between the agglomerating particles. A specific volume of dry powder per unit crack surface area was allowed to reattach to the surface of broken granules to account for granule growth. To verify proposed model conditions, lactose monohydrate was granulated with a relatively low amount (6%) of the binder phase, polyvinyl-pyrrolidone and water, and was added to the powder before granulation. The trend in granule size distribution during the experiment closely follwed the predicted model with an initial increase in the weight fraction of the larger granules. This increase was possibly due to extensive breakage of weaker granules and less extensive breakage, as if by attrition, of stronger granules, accompanied by the attachment of dry powder to the cracked surfaces. Eventually, larger granules experience increased impact energy and break. When excess binder is added and, higher volumes of powder reattach to the crack surface, more large granules form leading to granule overgrowth. This model highlights the importance of the probability of impact per unit time interval (ie, the rate of impact), the strength of the granules and the volume of powder that could attach to the cracked surface in high shear granulation processes where significant granule breakage is encountered. Published: August 10, 2007  相似文献   

6.
Summary The differentiation and maturation of monocytes and neutrophil granulocytes were studied in bone marrow of normal mice by electron microscopy and cytochemical assessment of peroxidatic activity. The granule populations of the mature cells of bone marrow were identified and investigated to obtain a basis for the analysis of the earlier stages of maturation. Mature monocytes and neutrophils showed primary and secondary granules, and mature neutrophils had more of both kinds. The size, shape, and number of primary granules proved to offer the most reliable criteria for distinguishing promonocytes and promyelocytes. The primary granules of monocytes were smaller than those of mature neutrophils and were either spherical (smallest diameter 50–200 nm) or elongate (100×400 nm). Both granules had a homogeneous matrix. The granules of the granulocytes were either spherical (smallest diameter 200–300 nm) or elongate (150–200×300–500 nm), and some of them had a crystalline inclusion.  相似文献   

7.
The objective of this study was to investigate the properties of granules and tablets with carbamazepine which were prepared employing a fluidized hot-melt granulation (FHMG) technique. The FHMG process was carried out at 65°C. Macrogol 6000 (PEG 6000) was used as a binder at the content 10% (w/w) of the granulated mass. Granules containing up to 70% (w/w) of the drug and 20–90% (w/w) of a filler (lactose, mannitol, calcium hydrogen phosphate (Di-Cafos), pregelatinized starch, and microcrystalline cellulose (MCC)) were produced. When the drug content was 30% (w/w), the yield of the process was satisfying (>95%) and flowability of the granules was better than placebo granules or drug-loaded granules prepared by wet granulation. Type of a filler had strong impact on physical properties of granules, and size distribution of the particles was the most homogenous when lactose or Di-Cafos were used. The FHMG technique enabled preparation of granules with better compressability compared with the wet-granulated product or with non-granulated powders. Tablets with shorter disintegration time than 10 min were obtained with 2.0% crospovidone added as a disintegrant. In comparison to tablets prepared from the wet-granulated mass, employment of the FHMG method resulted in tablets with faster dissolution of carbamazepine (more than 80% of the drug released within 15 min). This was achieved with mannitol or lactose/MCC, as fillers.  相似文献   

8.
The behavior of glycogen particles during oogenesis in the sea urchin was studied by electron microscopy. Before the beginning of oogenesis the nurse cells include many glycogen particles, which are spherical or multiangular in shape and about 600 A in diameter, lying within the vesicle of the large granules and also in the cytoplasm among the granules. There are few glycogen particles in the spaces among the oocytes and the nurse cells. At the early stage of oogenesis the limiting membrane of the large granule breaks locally and the glycogen particles in the vesicle are dispersed into the cytoplasm. The plasma membrane of the nurse cell also breaks in places and glycogen particles are spread throughout the intercellular space. At the beginning of vitellogenesis, β-pinosomes begin to be formed at the periphery of the oocyte; these take in glycogen particles from the outside which are progressively broken into smaller units.  相似文献   

9.
Lymphocytic choriomeningitis (LCM) virus was observed by electron microscopy in thin sections of infected tissue cultures. The particles were pleomorphic and varied greatly in size. The smaller particles (50 to 200 nm) appeared to be spherical, whereas the largest (over 200 nm) were often cup-shaped. All particles contained one to eight or more electron-dense granules which were removed by ribonuclease. The particles were formed by budding from the plasma membrane and appeared to have spikes. The morphological evidence suggests that LCM should be considered as belonging to the presently unclassified group of lipoprotein-enveloped ribonucleic acid viruses.  相似文献   

10.
Loh ZH  Sia BY  Heng PW  Lee CC  Liew CV 《AAPS PharmSciTech》2011,12(4):1374-1383
Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.  相似文献   

11.
12.
To overcome limitations of conventional milling technology, we investigated the application of fluid bed granulation for the production of dry-form nutrient media. Serum-free, protein-free and chemically-defined specialty media were produced in granulated format and compared with identical formulations manufactured by conventional methods. HPLC analysis of multiple lots of granulated materials demonstrated that biochemical constituents were precisely and homogeneously distributed throughout the granules and that nutrient levels were comparable to conventional formats. Comparison of medium performance in cell proliferation and biological production assays demonstrated equivalence with reference media. The fluid bed granulation process meets pharmaceutical quality requirements and may be applied to a broad range of nutrient formulations required for bioproduction applications. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Air filters efficiency is usually determined by non-biological test aerosols, such as potassium chloride particles, Arizona dust or di-ethyl-hexyl-sebacate (DEHS) oily liquid. This research was undertaken to asses, if application of non-biological aerosols reflects air filters capacity to collect particles of biological origin. The collection efficiency for non-biological aerosol was tested with the PALAS set and ISO Fine Test Dust. Flow rate during the filtration process was 720 l/h, and particles size ranged 0.246–17.165 μm. The upstream and downstream concentration of the aerosol was measured with a laser particle counter PCS-2010. Tested bioaerosol contained 4 bacterial strains of different shape and size: Micrococcus luteus, Micrococcus varians, Pseudomonas putida and Bacillus subtilis. Number of the biological particles was estimated with a culture-based method. Results obtained with bioaerosol did not confirmed 100% filters efficiency noted for the mineral test dust of the same aerodynamic diameter. Maximum efficiency tested with bacterial cells was 99.8%. Additionally, cells reemission from filters into air was also studied. Bioaerosol contained 3 bacterial strains: Micrococcus varians, Pseudomonas putida and Bacillus subtilis. It was proved that the highest intensity of the reemission process was during the first 5 min. and reached maximum 0.63% of total number of bacteria retained in filters. Spherical cells adhered stronger to the filter fibres than cylindrical ones. It was concluded that non-biological aerosol containing particles of the same shape and surface characteristics (like DEHS spherical particles) can not give representative results for all particles present in the filtered air.  相似文献   

14.
Metformin has a poor tabletability and flowability. Therefore, metformin is typically wet granulated with a binder before tableting. To save production costs, it would be desirable to implement a roll compaction/dry granulation (RCDG) process for metformin instead of using wet granulation. In order to implement RCDG, the efficiency of dry binders is crucial to ensure a high drug load and suitable properties of dry granules and tablets. This study evaluates dry granules manufactured by RCDG and subsequently tableting of high metformin content formulations (≥?87.5%). Based on previous results, fine particle grades of hydroxypropylcellulose and copovidone in different fractions were compared as dry binders. The formulations are suitable for RCDG and tableting. Furthermore, results can be connected to in-die and out-of-die compressibility analysis. The addition of 7% of dry binder is a good compromise to generate sufficient mechanical properties on the one hand, but also to save resources and ensure a high metformin content on the other hand. Hydroxypropylcellulose was more efficient in terms of granule size, tensile strength and friability. Three percent croscarmellose was added to reach the specifications of the US Pharmacopeia regarding dissolution. The final formulation has a metformin content of 87.5%. A loss in tabletability does not occur for granules compressed at different specific compaction forces, which displays a robust tensile strength of tablets independent of the granulation process.  相似文献   

15.
The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing).

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0219-3) contains supplementary material, which is available to authorized users.KEY WORDS: dry granulation, extended release, hydroxypropyl methylcellulose, roller compaction, work hardening  相似文献   

16.
A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets.  相似文献   

17.
A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets.  相似文献   

18.
The effect of anhydrous lactose particle size distribution on its performance in the wet granulation process was evaluated. Three grades of anhydrous lactose were used in the study: “as is” manufacturer grade and 2 particle size fractions obtained by screening of the 60M lactose. Particle growth behavior of the 3 lactose grades was evaluated in a high shear mixer. Compactibility and porosity of the resulting granules were also evaluated. A uniaxial compression test on moist agglomerates of the 3 lactose grades was performed in an attempt to explain the mechanism of particle size effect observed in the high shear mixer. Particle growth of anhydrous lactose in the high shear mixer was inversely related to the particle size of the starting material. In addition, granulation manufactured using the grade with the smallest particle size was more porous and demonstrated enhanced compactibility compared with the other grades. Compacts with similar porosity and low liquid saturation demonstrated brittle behavior and their breakage strength was inversely related to lactose particle size in the uniaxial compression test, suggesting that material with smaller particle size may exhibit more pronounced nucleation behavior during wet granulation. On the other hand, compacts prepared at higher liquid saturation and similar compression force exhibited more plastic behavior and showed lower yield stress for the grade with smallest particle size. The lower yield stress of compacts prepared with this grade may indicate a higher coalescence tendency for its granules during wet granulation.  相似文献   

19.
Large molecular weight plasmids are often used in gene therapy and DNA vaccines. To investigate the effect of plasmid size on the performance of Escherichia coli host strains during plasmid preparation, we employed E. coli JM109 and TOP10 cells to prepare four plasmids ranging from 4.7 to 16.8?kb in size. Each plasmid was extracted from JM109 and TOP10 cells using an alkaline lysis mini-preparation method. However, when commercial kits were used to extract the same plasmids from JM109 cells, the large molecular weight plasmids substantially degraded, compared with their smaller counterparts. No degradation was observed when the four plasmids were extracted from E. coli TOP10 cells using the same commercial kit. We conclude, therefore, that the performance of E. coli in high quality plasmid preparations can be affected by plasmid size.  相似文献   

20.
AIMS: This paper attempts to provide visual evidence of how aerobic granulation evolves in sequential aerobic sludge blanket reactors. METHODS AND RESULTS: A series of experiments were conducted in two column-type sequential aerobic sludge reactors fed with glucose and acetate as sole carbon source, respectively. The evolution of aerobic granulation was monitored using image analysis and optical and scanning electron microscopy. The results indicated that the formation of aerobic granules was a gradual process from seed sludge to compact aggregates, further to granular sludge and finally to mature granules with the sequential operation proceeding. Glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density and microbial activity. However, the microbial diversity of the granules was associated with the carbon source supplied. In this work, an important aerobic starvation phase was identified during sequential operation cycles. It was found that periodical aerobic starvation was an effective trigger for microbial aggregation in the reactor and further strengthened cell-cell interaction to form dense aggregates, which was an essential step of granulation. The periodical starvation-induced aggregates would finally be shaped to granules by hydrodynamic shear and flow. CONCLUSION: Aerobic granules can be formed within 3 weeks in the systems. The periodical starvation and hydrodynamic conditions would play a crucial role in the granulation process. SIGNIFICANCE AND IMPACT OF THE STUDY: Aerobic granules have excellent physical characteristics as compared with conventional activated sludge flocs. This research could be helpful for the development of an aerobic granule-based novel type of reactor for handling high strength organic wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号