首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have studied the folding pathway of a beta-barrel membrane protein using outer membrane protein A (OmpA) of Escherichia coli as an example. The deletion of the gene of periplasmic Skp impairs the assembly of outer membrane proteins of bacteria. We investigated how Skp facilitates the insertion and folding of completely unfolded OmpA into phospholipid membranes and which are the biochemical and biophysical requirements of a possible Skp-assisted folding pathway. In refolding experiments, Skp alone was not sufficient to facilitate membrane insertion and folding of OmpA. In addition, lipopolysaccharide (LPS) was required. OmpA remained unfolded when bound to Skp and LPS in solution. From this complex, OmpA folded spontaneously into lipid bilayers as determined by electrophoretic mobility measurements, fluorescence spectroscopy, and circular dichroism spectroscopy. The folding of OmpA into lipid bilayers was inhibited when one of the periplasmic components, either Skp or LPS, was absent. Membrane insertion and folding of OmpA was most efficient at specific molar ratios of OmpA, Skp, and LPS. Unfolded OmpA in complex with Skp and LPS folded faster into phospholipid bilayers than urea-unfolded OmpA. Together, these results describe a first assisted folding pathway of an integral membrane protein on the example of OmpA.  相似文献   

2.
Using a cross-linking approach, we have analyzed the function of Skp, a presumed molecular chaperone of the periplasmic space of Escherichia coli, during the biogenesis of an outer membrane protein (OmpA). Following its transmembrane translocation, OmpA interacts with Skp in close vicinity to the plasma membrane. In vitro, Skp was also found to bind strongly and specifically to pOmpA nascent chains after their release from the ribosome suggesting the ability of Skp to recognize early folding intermediates of outer membrane proteins. Pulse labeling of OmpA in spheroplasts prepared from an skp null mutant revealed a specific requirement of Skp for the release of newly translocated outer membrane proteins from the plasma membrane. Deltaskp mutant cells are viable and show only slight changes in the physiology of their outer membranes. In contrast, double mutants deficient both in Skp and the periplasmic protease DegP (HtrA) do not grow at 37 degrees C in rich medium. We show that in the absence of an active DegP, a lack of Skp leads to the accumulation of protein aggregates in the periplasm. Collectively, our data demonstrate that Skp is a molecular chaperone involved in generating and maintaining the solubility of early folding intermediates of outer membrane proteins in the periplasmic space of Gram-negative bacteria.  相似文献   

3.
SurA, Skp, FkpA, and DegP constitute a chaperone network that ensures biogenesis of outer membrane proteins (OMPs) in Gram‐negative bacteria. Both Skp and FkpA are holdases that prevent the self‐aggregation of unfolded OMPs, whereas SurA accelerates folding and DegP is a protease. None of these chaperones is essential, and we address here how functional plasticity is manifested in nine known null strains. Using a comprehensive computational model of this network termed OMPBioM, our results suggest that a threshold level of steady state holdase occupancy by chaperones is required, but the cell is agnostic to the specific holdase molecule fulfilling this function. In addition to its foldase activity, SurA moonlights as a holdase when there is no expression of Skp and FkpA. We further interrogate the importance of chaperone–client complex lifetime by conducting simulations using lifetime values for Skp complexes that range in length by six orders of magnitude. This analysis suggests that transient occupancy of durations much shorter than the Escherichia coli doubling time is required. We suggest that fleeting chaperone occupancy facilitates rapid sampling of the periplasmic conditions, which ensures that the cell can be adept at responding to environmental changes. Finally, we calculated the network effects of adding multivalency by computing populations that include two Skp trimers per unfolded OMP. We observe only modest perturbations to the system. Overall, this quantitative framework of chaperone–protein interactions in the periplasm demonstrates robust plasticity due to its dynamic binding and unbinding behavior.  相似文献   

4.
The periplasmic seventeen kilodalton protein (Skp) chaperone has been characterized primarily for its role in outer membrane protein (OMP) biogenesis, during which the jellyfish-like trimeric protein encapsulates partially folded OMPs, protecting them from the aqueous environment until delivery to the BAM outer membrane protein insertion complex. However, Skp is increasingly recognized as a chaperone that also assists in folding soluble proteins in the bacterial periplasm. In this capacity, Skp coexpression increases the active yields of many recombinant proteins and bacterial virulence factors. Using a panel of single-chain antibodies and a single-chain T-cell receptor (collectively termed scFvs) possessing varying stabilities and biophysical characteristics, we performed in vivo expression and in vitro folding and aggregation assays in the presence or absence of Skp. For Skp-sensitive scFvs, the presence of Skp during in vitro refolding assays reduced aggregation but did not alter the observed folding rates, resulting in a higher overall yield of active protein. Of the proteins analyzed, Skp sensitivity in all assays correlated with the presence of folding intermediates, as observed with urea denaturation studies. These results are consistent with Skp acting as a holdase, sequestering partially folded intermediates and thereby preventing aggregation. Because not all soluble proteins are sensitive to Skp coexpression, we hypothesize that the presence of a long-lived protein folding intermediate renders a protein sensitive to Skp. Improved understanding of the bacterial periplasmic protein folding machinery may assist in high-level recombinant protein expression and may help identify novel approaches to block bacterial virulence.  相似文献   

5.
Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 Å resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the β subunit is essentially involved in substrate binding and that the α subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the β subunit in the hydrophobic groove have shown that βIle107 has a critical role in forming the hydrophobic groove.  相似文献   

6.
The 17-kDa protein (Skp) of Escherichia coli is a homotrimeric periplasmic chaperone for newly synthesized outer-membrane proteins. Here we present its X-ray structure at a resolution of 2.35 A. Three hairpin-shaped alpha-helical extensions reach out by approximately 60 A from a trimerization domain, which is composed of three intersubunit beta-sheets that wind around a central axis. The alpha-helical extensions approach each other at their distal turns, resulting in a fold that resembles a 'three-pronged grasping forceps'. The overall shape of Skp is reminiscent of the cytosolic chaperone prefoldin, although it is based on a radically different topology. The peculiar architecture, with apparent plasticity of the prongs and distinct electrostatic and hydrophobic surface properties, supports the recently proposed biochemical mechanism of this chaperone: formation of a Skp(3)-Omp complex protects the outer membrane protein from aggregation during passage through the bacterial periplasm.  相似文献   

7.
The Escherichia coli periplasmic chaperone and peptidyl-prolyl isomerase (PPIase) SurA facilitates the maturation of outer membrane porins. Although the PPIase activity exhibited by one of its two parvulin-like domains is dispensable for this function, the chaperone activity residing in the non-PPIase regions of SurA, a sizable N-terminal domain and a short C-terminal tail, is essential. Unlike most cytoplasmic chaperones SurA is selective for particular substrates and recognizes outer membrane porins synthesized in vitro much more efficiently than other proteins. Thus, SurA may be specialized for the maturation of outer membrane proteins. We have characterized the substrate specificity of SurA based on its natural, biologically relevant substrates by screening cellulose-bound peptide libraries representing outer membrane proteins. We show that two features are critical for peptide binding by SurA: specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins than in other proteins. For the first time this sufficiently explains the capability of SurA to discriminate between outer membrane protein and non-outer membrane protein folding intermediates. Furthermore, peptide binding by SurA requires neither an active PPIase domain nor the presence of proline, indicating that the observed substrate specificity relates to the chaperone function of SurA. Finally, we show that SurA is capable of associating with the outer membrane. Together, our data support a model in which SurA is specialized to interact with non-native periplasmic outer membrane protein folding intermediates and to assist in their maturation from early to late outer membrane-associated steps.  相似文献   

8.
The interactions of outer membrane proteins (OMPs) with the periplasmic chaperone Skp from Escherichia coli are not well understood. We have examined the binding of Skp to various OMPs of different origin, size, and function. These were OmpA, OmpG, and YaeT (Omp85) from Escherichia coli, the translocator domain of the autotransporter NalP from Neisseria meningitides, FomA from Fusobacterium nucleatum, and the voltage-dependent anion-selective channel, human isoform 1 (hVDAC1) from mitochondria. Binding of Skp was observed for bacterial OMPs, but neither for hVDAC1 nor for soluble bovine serum albumin. The Skp trimer formed 1:1 complexes, OMP·Skp3, with bacterial OMPs, independent of their size or origin. The dissociation constants of these OMP·Skp3 complexes were all in the nanomolar range, indicating that they are stable. Complexes of Skp3 with YaeT displayed the smallest dissociation constants, complexes with NalP the largest. OMP binding to Skp3 was pH-dependent and not observed when either Skp or OMPs were neutralized at very basic or very acidic pH. When the ionic strength was increased, the free energies of binding of Skp to OmpA or OmpG were reduced. Electrostatic interactions were therefore necessary for formation and stability of OMP·Skp3 complexes. Light-scattering and circular dichroism experiments demonstrated that Skp3 remained a stable trimer from pH 3 to pH 11. In the OmpA·Skp3 complex, Skp efficiently shielded tryptophan residues of the transmembrane strands of OmpA against fluorescence quenching by aqueous acrylamide. Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, bound to OmpA·Skp3 complexes at low stoichiometries. Acrylamide quenching of fluorescence indicated that in this ternary complex, the tryptophan residues of the transmembrane domain of OmpA were located closer to the surface than in binary OmpA·Skp3 complexes. This may explain previous observations that folding of Skp-bound OmpA into lipid bilayers is facilitated in presence of LPS.  相似文献   

9.
Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber.  相似文献   

10.
Spheroplasts were used to study the early interactions of newly synthesized outer membrane protein PhoE with periplasmic proteins employing a protein cross-linking approach. Newly translocated PhoE protein could be cross-linked to the periplasmic chaperone Skp at the periplasmic side of the inner membrane. To study the timing of this interaction, a PhoE-dihydrofolate reductase hybrid protein was constructed that formed translocation intermediates, which had the PhoE moiety present in the periplasm and the dihydrofolate reductase moiety tightly folded in the cytoplasm. The hybrid protein was found to cross-link to Skp, indicating that PhoE closely interacts with the chaperone when the protein is still in a transmembrane orientation in the translocase. Removal of N-terminal parts of PhoE protein affected Skp binding in a cumulative manner, consistent with the presence of two Skp-binding sites in that region. In contrast, deletion of C-terminal parts resulted in variable interactions with Skp, suggesting that interaction of Skp with the N-terminal region is influenced by parts of the C terminus of PhoE protein. Both the soluble as well as the membrane-associated Skp protein were found to interact with PhoE. The latter form is proposed to be involved in the initial interaction with the N-terminal regions of the outer membrane protein.  相似文献   

11.
β-Barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, β-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all β-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the nonviable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli.  相似文献   

12.
The process of protein folding in the cell is now known to depend on the action of other proteins. These proteins include molecular chaperones, Which interact non-covalently with proteins as they fold and improve the final yields of active protein in the cell. The precise mechanism by which molecular chaperones act is obscure. Experiments reported recently(1) show that for one molecular chaperone (Cpn60, typified by the E. coli protein GroEL), the folding reaction is driven by cycles of binding and release of the co-chaperone Cpn10 (known as GroES in E. coli). These alternate with binding and release of the unfolded protein substrate. These cycles come about because of the opposite effects of Cpn10 and unfolded protein on the Cpn60 complex: the former stabilises the ADP-bound state of Cpn60, whereas the latter stimulates ADP-ATP exchange. This model proposes that the substrate protein goes through multiple cycles of binding and release, and is released into the cavity of the Cpn60 complex where it can undergo folding without interacting with other nearby folding intermediates. This is consistent with the ability of Cpn60 proteins to enhance folding by blocking pathways to aggregation.  相似文献   

13.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

14.
The periplasmic chaperone Skp has long been implicated in the assembly of outer membrane proteins (OMPs) in Escherichia coli. It has been shown to interact with unfolded OMPs, and the simultaneous loss of Skp and the main periplasmic chaperone in E. coli, SurA, results in synthetic lethality. However, a Δskp mutant displays only minor OMP assembly defects, and no OMPs have been shown to require Skp for their assembly. Here, we report a role for Skp in the assembly of the essential OMP LptD. This role may be compensated for by other OMP assembly proteins; in the absence of both Skp and FkpA or Skp and BamB, LptD assembly is impaired. Overexpression of SurA does not restore LptD levels in a Δskp ΔfkpA double mutant, nor does the overexpression of Skp or FkpA restore LptD levels in the ΔsurA mutant, suggesting that Skp acts in concert with SurA to efficiently assemble LptD in E. coli. Other OMPs, including LamB, are less affected in the Δskp ΔfkpA and Δskp bamB::kan double mutants, suggesting that Skp is specifically necessary for the assembly of certain OMPs. Analysis of an OMP with a domain structure similar to that of LptD, FhuA, suggests that common structural features may determine which OMPs require Skp for their assembly.  相似文献   

15.
Siegert R  Leroux MR  Scheufler C  Hartl FU  Moarefi I 《Cell》2000,103(4):621-632
Prefoldin (GimC) is a hexameric molecular chaperone complex built from two related classes of subunits and present in all eukaryotes and archaea. Prefoldin interacts with nascent polypeptide chains and, in vitro, can functionally substitute for the Hsp70 chaperone system in stabilizing non-native proteins for subsequent folding in the central cavity of a chaperonin. Here, we present the crystal structure and characterization of the prefoldin hexamer from the archaeum Methanobacterium thermoautotrophicum. Prefoldin has the appearance of a jellyfish: its body consists of a double beta barrel assembly with six long tentacle-like coiled coils protruding from it. The distal regions of the coiled coils expose hydrophobic patches and are required for multivalent binding of nonnative proteins.  相似文献   

16.
TolC is a multifunctional outer membrane protein of Escherichia coli that folds into a novel alpha-beta-barrel conformation absent in the other model outer membrane proteins used in assembly studies. The data presented in this work show that the unique folded structure of TolC reflects a unique assembly pathway. During its assembly, the newly translocated nascent TolC monomers are released in the periplasm. Maturation of these nascent monomers, and possibly their oligomerization, in the periplasm precedes their insertion in the outer membrane. The completion of the assembly process is signaled by the development of a characteristic proteinase K-resistant fragment generated by cleavage at a single, periplasmically exposed, protease-sensitive site of the membrane-anchored trimer. None of the assembly steps of TolC is affected by known folding factors, such as SurA, Skp, and lipopolysaccharide, which have profound effects on the assembly of other model trimeric outer membrane proteins. Two assembly-defective TolC mutants were isolated and characterized. One of the mutants (TolC(I106N)) was defective in the folding of nascent monomers, while the other (TolC(S350F)) was impaired in steps involving trimerization and membrane insertion of folded monomers.  相似文献   

17.
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid–protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

18.
Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome-nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors.  相似文献   

19.
The outer membrane of a Gram‐negative bacterium is a crucial barrier between the external environment and its internal physiology. This barrier is bridged selectively by β‐barrel outer membrane proteins (OMPs). The in vivo folding and biogenesis of OMPs necessitates the assistance of the outer membrane chaperone BamA. Nevertheless, OMPs retain the ability of independent self‐assembly in vitro. Hence, it is unclear whether substrate–chaperone dynamics is influenced by the intrinsic ability of OMPs to fold, the magnitude of BamA–OMP interdependence, and the contribution of BamA to the kinetics of OMP assembly. We addressed this by monitoring the assembly kinetics of multiple 8‐stranded β‐barrel OMP substrates with(out) BamA. We also examined whether BamA is species‐specific, or nonspecifically accelerates folding kinetics of substrates from independent species. Our findings reveal BamA as a substrate‐independent promiscuous molecular chaperone, which assists the unfolded OMP to overcome the kinetic barrier imposed by the bilayer membrane. We additionally show that while BamA kinetically accelerates OMP folding, the OMP primary sequence remains a vital deciding element in its assembly rate. Our study provides unexpected insights on OMP assembly and the functional relevance of BamA in vivo.  相似文献   

20.
Bacterial ribosomes or their 50S subunit can refold many unfolded proteins. The folding activity resides in domain V of 23S RNA of the 50S subunit. Here we show that ribosomes can also refold a denatured chaperone, DnaK, in vitro, and the activity may apply in the folding of nascent DnaK polypeptides in vivo. The chaperone was unusual as the native protein associated with the 50S subunit stably with a 1:1 stoichiometry in vitro. The binding site of the native protein appears to be different from the domain V of 23S RNA, the region with which denatured proteins interact. The DnaK binding influenced the protein folding activity of domain V modestly. Conversely, denatured protein binding to domain V led to dissociation of the native chaperone from the 50S subunit. DnaK thus appears to depend on ribosomes for its own folding, and upon folding, can rebind to ribosome to modulate its general protein folding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号