首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs containing premature translation termination codons. In mammalian cells, a termination codon is ordinarily recognized as "premature" if it is located greater than 50-54 nucleotides 5' to the final exon-exon junction. We have described a set of naturally occurring human beta-globin gene mutations that apparently contradict this rule. The corresponding beta-thalassemia genes contain nonsense mutations within exon 1, and yet their encoded mRNAs accumulate to levels approaching wild-type beta-globin (beta(WT)) mRNA. In the present report we demonstrate that the stabilities of these mRNAs with nonsense mutations in exon 1 are intermediate between beta(WT) mRNA and beta-globin mRNA carrying a prototype NMD-sensitive mutation in exon 2 (codon 39 nonsense; beta 39). Functional analyses of these mRNAs with 5'-proximal nonsense mutations demonstrate that their relative resistance to NMD does not reflect abnormal RNA splicing or translation re-initiation and is independent of promoter identity and erythroid specificity. Instead, the proximity of the nonsense codon to the translation initiation AUG constitutes a major determinant of NMD. Positioning a termination mutation at the 5' terminus of the coding region blunts mRNA destabilization, and this effect is dominant to the "50-54 nt boundary rule." These observations impact on current models of NMD.  相似文献   

2.
无义突变介导的mRNA降解(nonsense mediated mRNA decay, NMD)途径是真核生物体内一种重要的mRNA监督质控机制, 它降解含有由无义突变、错误剪接、移码突变等产生的提前终止翻译密码子(premature translation termination codon, PTC)的mRNA, 从而防止这种mRNA翻译产生的截短型蛋白质对机体造成的伤害. 研究发现, 一些含有PTC的mRNA发生了NMD途径逃逸, 但具体机制仍不清楚.本研究将成视网膜细胞瘤基因1 (retinoblastoma gene 1, RB1)作为NMD途径的靶基因, 构建mini-RB1基因,包括外显子1~14(cDNA)、内含子14 外显子15 内含子15和外显子16~27(cDNA) 的三部分序列, 将其构建到真核表达载体pcDNA 3.1(-)中.根据人类基因组突变数据库选择3个突变位点W99X、G310X和R467X, 构建相应无义突变体.分别将mini RB1基因野生型和无义突变体转入HeLa细胞进行表达.用qRT-PCR检测发现, W99X无义突变体与野生型相比mRNA的水平无显著差异.为了进一步证实mini- RB1(W99X)发生了NMD逃逸, 利用NMD途径抑制剂放线菌酮和转录抑制剂放线菌素D, 分别处理转入野生型的mini RB1基因及其无义突变体mini-RB1(W99X)的哺乳动物细胞, 发现mini-RB1基因无义突变体的mRNA水平与野生型无明显差异, 说明含有W99X无义突变的mini-RB1基因的mRNA发生了NMD逃逸.Western印迹检测mini-RB1基因的蛋白质表达发现, 在无义突变位点W99X下游重新起始了蛋白质的翻译, 因此,PTC下游蛋白质翻译的重新起始可能是导致无义mRNA逃逸NMD途径监控的主要原因.  相似文献   

3.
4.
The degradation of nonsense-mutated β-globin mRNA by nonsense-mediated mRNA decay (NMD) limits the synthesis of C-terminally truncated dominant negative β-globin chains and thus protects the majority of heterozygotes from symptomatic β-thalassemia. β-globin mRNAs with nonsense mutations in the first exon are known to bypass NMD, although current mechanistic models predict that such mutations should activate NMD. A systematic analysis of this enigma reveals that (1) β-globin exon 1 is bisected by a sharp border that separates NMD-activating from NMD-bypassing nonsense mutations and (2) the ability to bypass NMD depends on the ability to reinitiate translation at a downstream start codon. The data presented here thus reconcile the current mechanistic understanding of NMD with the observed failure of a class of nonsense mutations to activate this important mRNA quality-control pathway. Furthermore, our data uncover a reason why the position of a nonsense mutation alone does not suffice to predict the fate of the affected mRNA and its effect on protein expression.  相似文献   

5.
6.
Aberrant messenger RNAs containing a premature termination codon (PTC) are eliminated by the nonsense‐mediated mRNA decay (NMD) pathway. Here, we show that a crucial NMD factor, up frameshift 1 protein (Upf1), is required for rapid proteasome‐mediated degradation of an aberrant protein (PTC product) derived from a PTC‐containing mRNA. Western blot and pulse–chase analyses revealed that Upf1 stimulates the degradation of specific PTC products by the proteasome. Moreover, the Upf1‐dependent, proteasome‐mediated degradation of the PTC product was also stimulated by mRNAs harbouring a faux 3′ untranslated region (3′‐UTR). These results indicate that protein stability might be regulated by an aberrant mRNA 3′‐UTR.  相似文献   

7.
8.
9.
10.
11.
The mRNA surveillance system is known to rapidly degrade aberrant mRNAs that contain premature termination codons in a process referred to as nonsense-mediated decay. A second class of aberrant mRNAs are those wherein the 3' UTR is abnormally extended due to a mutation in the polyadenylation site. We provide several observations that these abnormally 3'-extended mRNAs are degraded by the same machinery that degrades mRNAs with premature nonsense codons. First, the decay of the 3'-extended mRNAs is dependent on the same decapping enzyme and 5'-to-3' exonuclease. Second, the decay is also dependent on the proteins encoded by the UPF1, UPF2, and UPF3 genes, which are known to be specifically required for the rapid decay of mRNAs containing nonsense codons. Third, the ability of an extended 3' UTR to trigger decay is prevented by stabilizing sequences within the PGK1 coding region that are known to protect mRNAs from the rapid decay induced by premature nonsense codons. These results indicate that the mRNA surveillance system plays a role in degrading abnormally extended 3' UTRs. Based on these results, we propose a model in which the mRNA surveillance machinery degrades aberrant mRNAs due to the absence of the proper spatial arrangement of the translation-termination codon with respect to the 3' UTR element as defined by the utilization of a polyadenylation site.  相似文献   

12.
13.
Rapid turnover of nonsense-containing mRNAs in the yeast Saccharomyces cerevisiae is dependent on the products of the UPF1 (Upf1p), NMD2/UPF2 (Nmd2p) and UPF3 (Upf3p) genes. Mutations in each of these genes lead to the selective stabilization of mRNAs containing early nonsense mutations without affecting the decay rates of most other mRNAs. NMD2 was recently identified in a two-hybrid screen as a gene that encodes a Upf1p-interacting protein. To identify the amino acids essential to this interaction, we used two-hybrid analysis as well as missense, nonsense, and deletion mutants of NMD2, and mapped the Upf1p-interacting domain of Nmd2p to a 157-amino acid segment at its C-terminus. Mutations in this domain that disrupt interaction with Upf1p also disrupt nonsense-mediated mRNA decay. A dominant-negative deletion allele of NMD2 identified previously includes the Upf1p-interacting domain. However, mutations in the Upf1p-interacting domain do not affect dominant-negative inhibition of mRNA decay caused by this allele, suggesting interaction with yet another factor. These results, and the observation that deletion of a putative nuclear localization signal and a putative transmembrane domain also inactivate nonsense-mediated mRNA decay, suggest that Nmd2p may contain as many as four important functional domains.  相似文献   

14.
15.
16.
17.
Eukaryotic cells target mRNAs to the nonsense-mediated mRNA decay (NMD) pathway when translation terminates within the coding region. In mammalian cells, this is presumably due to a downstream signal deposited during pre-mRNA splicing. In contrast, unspliced retroviral RNA undergoes NMD in chicken cells when premature termination codons (PTCs) are present in the gag gene. Surprisingly, deletion of a 401-nt 3' UTR sequence immediately downstream of the normal gag termination codon caused this termination event to be recognized as premature. We termed this 3' UTR region the Rous sarcoma virus (RSV) stability element (RSE). The RSE also stabilized the viral RNA when placed immediately downstream of a PTC in the gag gene. Deletion analysis of the RSE indicated a smaller functional element. We conclude that this 3' UTR sequence stabilizes termination codons in the RSV RNA, and termination codons not associated with such an RSE sequence undergo NMD.  相似文献   

18.
Sun X  Moriarty PM  Maquat LE 《The EMBO journal》2000,19(17):4734-4744
mRNA for glutathione peroxidase 1 (GPx1) is subject to cytoplasmic nonsense-mediated decay (NMD) when the UGA selenocysteine (Sec) codon is recognized as nonsense. Here, we demonstrate by moving the sole intron of the GPx1 gene that either the Sec codon or a TAA codon in its place elicits NMD when located >/=59 bp but not 相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号