首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is increasingly recognized that current established model systems are not sufficient to understand the evolution of biodiversity. The main limitation in developing additional model systems is the difficulty or inability to perform functional studies of target genes. Evolutionary developmental (evo-devo) biologists have adopted a transient transgenic technique, developed over the last decade for agricultural applications, which is allowing functional studies in the most disparate plant lineages. From monocots to dicots and from herbs to trees, virus-induced gene silencing (VIGS) has opened up a world of opportunities in plant evo-devo.  相似文献   

3.
Many plant viruses have been engineered into vectors for use in functional genomics studies, expression of heterologous proteins, and, most recently, gene editing applications. The use of viral vectors overcomes bottlenecks associated with mutagenesis and transgenesis approaches often implemented for analysis of gene function. There are several engineered viruses that are demonstrated or suggested to be useful in maize through proof-of-concept studies. However, foxtail mosaic virus (FoMV), which has a relatively broad host range, is emerging as a particularly useful virus for gene function studies in maize and other monocot crop or weed species. A few clones of FoMV have been independently engineered, and they have different features and capabilities for virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX) of proteins. In addition, FoMV can be used to deliver functional guide RNAs in maize and other plants expressing the Cas9 protein, demonstrating its potential utility in virus-induced gene editing applications. There is a growing number of studies in which FoMV vectors are being applied for VIGS or VOX in maize and the vast majority of these are related to maize–microbe interactions. In this review, we highlight the biology and engineering of FoMV as well as its applications in maize–microbe interactions and more broadly in the context of the monocot functional genomics toolbox.  相似文献   

4.
A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as “foundation for twenty-first century crop improvement”, a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as “the holy grail” of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.  相似文献   

5.
Jatropha curcas L. is a small, woody tree of the Euphorbiaceae family. This plant can grow on marginal land in the tropical and subtropical regions and produces seeds containing up to 30% oil. Several Asian countries have selected Jatropha for large scale planting as a biodiesel feedstock. Nevertheless, Jatropha also possesses several undesirable traits that may limit its wide adoption. An improved understanding of plant development and the regulation of fatty acid (FA) and triacylglyceride biosynthesis in Jatropha is particularly facilitative for the development of elite crops. Here, we show that a tobacco rattle virus (TRV) vector can trigger virus-induced gene silencing (VIGS) in Jatropha. Our optimized method produced robust and reliable gene silencing in plants agroinoculated with recombinant TRV harbouring Jatropha gene sequences. We used VIGS to investigate possible functions of 13 Jatropha genes of several functional categories, including FA biosynthesis, developmental regulation and toxin biosynthesis, etc. Based on the effects of VIGS on the FA composition of newly emerged leaves, we determined the function of several genes implicated in FA biosynthesis. Moreover, VIGS was able to discriminate independent functions of related gene family members. Our results show that VIGS can be used for high-throughput screening of Jatropha genes whose functions can be assayed in leaves.  相似文献   

6.
Several distinct pathways of RNA silencing operate in plants with roles including the suppression of virus accumulation, control of endogenous gene expression, and direction of DNA and chromatin modifications. Proteins of the Dicer-Like and Argonaute (AGO) families have key roles within these silencing pathways and have distinct biochemical properties. We are interested in the relationships between different silencing pathways and have used Nicotiana benthamiana as a model system. While not being an amenable plant for traditional genetics, N. benthamiana is extensively used for RNA-silencing studies. Using virus-induced gene silencing technology we demonstrate that both NbAGO1- and NbAGO4-like genes are required for full systemic silencing but not for silencing directed by an inverted repeat transgene. Phenotypic differences between the virus-induced gene silencing plants indicate that NbAGO1 and NbAGO4 like act at different stages of the silencing pathways. Suppression of NbAGO1 expression recapitulated the hypomorphic mutant phenotype of certain Arabidopsis (Arabidopsis thaliana) ago1 alleles, however, suppression of NbAgo4 like resulted in phenotypes differing in some respects from those reported for Arabidopsis ago4. We suggest that the small interfering RNA amplification step required for full systemic silencing is dependent upon a nuclear event requiring the activity of NbAGO4 like.  相似文献   

7.
8.
The turnip crinkle virus-based vector TCV-GFP Delta CP had been devised previously to study cell-to-cell and long-distance spread of virus-induced RNA silencing. TCV-GFP Delta CP, which had been constructed by replacing the coat protein (CP) gene with a green fluorescent protein (GFP) coding sequence, was able to induce RNA silencing in single epidermal cells, from which RNA silencing spread from cell-to-cell. Using this unique local silencing assay together with mutagenesis analysis, two TCV genes, p8 and p9, which were involved in the intercellular spread of virus-induced RNA silencing, were identified. TCV-GFP Delta CP and its p8- or p9-mutated derivatives, TCVmp8-GFP Delta CP and TCVmp9-GFP Delta CP, replicated efficiently but were restricted to single Nicotiana benthamiana epidermal cells. TCV-GFP Delta CP, TCVmp8-GFP Delta CP, or TCVmp9-GFP Delta CP was able to initiate RNA silencing that targeted and degraded recombinant viral RNAs in inoculated leaves of the GFP-expressing N. benthamiana line 16c. However, cell-to-cell spread of silencing to form silencing foci was triggered only by TCV-GFP Delta CP. Non-replicating TCVmp88-GFP Delta CP and TCVmp28mp88-GFP Delta CP with dysfunctional replicase genes, and single-stranded gfp RNA did not induce RNA silencing. Transient expression of the TCV p9 protein could effectively complement TCVmp9-GFP Delta CP to facilitate intercellular spread of silencing. These data suggest that the plant cellular trafficking machinery could hijack functional viral proteins to permit cell-to-cell movement of RNA silencing.  相似文献   

9.
10.
11.
Barley stripe mosaic virus-induced gene silencing in a monocot plant   总被引:35,自引:0,他引:35  
RNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize. To demonstrate VIGS in a monocot host, we modified BSMV to express untranslatable foreign inserts downstream of the gammab gene, in either sense or antisense orientations. Phytoene desaturase (PDS) is required for synthesizing carotenoids, compounds that protect chlorophyll from photo-bleaching. A partial PDS cDNA amplified from barley was 90, 88 and 74% identical to PDS cDNAs from rice, maize and Nicotiana benthamiana, respectively. Barley infected with BSMV expressing barley, rice or maize PDS fragments became photo-bleached and accumulated phytoene (the substrate for PDS) in a manner similar to plants treated with the chemical inhibitor of PDS, norflurazon. In contrast, barley infected with wild-type BSMV, or BSMV expressing either N. benthamiana PDS or antisense green fluorescent protein (GFP), did not photo-bleach or accumulate phytoene. Thus BSMV silencing of the endogenous PDS was homology-dependent. Deletion of the coat protein enhanced the ability of BSMV to silence PDS. This is the first demonstration of VIGS in a monocot, and suggests that BSMV can be used for functional genomics and studies of RNA-silencing mechanisms in monocot plant species.  相似文献   

12.
Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of "sectoring" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.  相似文献   

13.
Traditionally, developmental studies in plant biology have suffered from the lack of a convenient means to study gene function in non-model plant species. Here we show that virus-induced gene silencing (VIGS) is an effective new tool to study the function of orthologs of floral homeotic genes such as DEFICIENS (DEF) in non-model systems. We used a tobacco rattle virus (TRV)-based VIGS approach to study the function of the Nicotiana benthamiana DEF ortholog (NbDEF). Silencing of NbDEF in N. benthamiana using TRV-VIGS was similar to that of Antirrhinum def and Arabidopsis ap3 mutants and caused transformation of petals into sepals and stamens into carpels. Molecular analysis of the NbDEF -silenced plants revealed a dramatic reduction of the levels of NbDEF mRNA and protein in flowers. NbDEF silencing was specific and has no effect on the mRNA levels of NbTM6, the closest paralog of NbDEF. A dramatic reduction of the levels of N. benthamiana GLOBOSA (NbGLO) mRNA and protein was also observed in flowers of NbDEF-silenced plants, suggesting that cross-regulation of this GLO-like gene by NbDEF. Taken together, our results suggest that NbDEF is a functional homolog of Antirrhinum DEF. Our results are significant in that they show that TRV efficiently induces gene silencing in young and differentiating flowers and that VIGS is a promising new tool for analyses of developmental gene function in non-model organisms.  相似文献   

14.
15.
Virus-induced gene silencing (VIGS) is a natural defence mechanism in plants which leads to sequence-specific degradation of viral RNA. For identifying gene functions, Tobacco rattle virus (TRV)-based VIGS has been applied for silencing of endogenous genes in many plant species. Gerbera hybrida (Asteraceae) has emerged as a novel model for studies in flower development and secondary metabolism. For this highly heterozygous species, functional studies have been conducted through reverse genetic methods by producing stable transgenic lines, which, however, is labour-intensive and time-consuming. For the development of TRV-based VIGS system for gerbera, and for the first time for an Asteraceaeous species, we screened several gerbera cultivars and optimized the agroinfiltration methods for efficient silencing. Gene fragments for gerbera phytoene desaturase (GPDS) and Mg-chelatase subunits (GChl-H and GChl-I), expressed from a TRV vector, induced silencing phenotypes in leaves, scapes, and involucral bracts indicating their feasibility as markers for green tissues. In addition, robust silencing symptoms were achieved in gerbera floral tissues by silencing the anthocyanin pathway gene for chalcone synthase (GCHS1) and a gerbera B-type MADS-box gene globosa (GGLO1), confirming the phenotypes previously observed in stable transgenic lines. Unexpectedly, photobleaching induced by GPDS and GChl-H or GChl-I silencing, or by the herbicide norflurazon, resulted in silencing of the polyketide synthase gene G2PS1, which has no apparent connections to carotenoid or chlorophyll biosynthesis. We have shown feasibility of VIGS for functional studies in gerbera, but our results also show that selection of the marker gene for silencing must be critically evaluated.  相似文献   

16.
Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemically infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.  相似文献   

17.
RNA silencing is conserved in a broad range of eukaryotes and operates in the development and maintenance of genome integrity in many organisms. Plants have adapted this system for antiviral defense, and plant viruses have in turn developed mechanisms to suppress RNA silencing. RNA silencing-related RNA inactivation is likely based on target RNA cleavage or translational arrest. Although it is widely assumed that virus-induced gene silencing (VIGS) promotes the endonucleolytic cleavage of the viral RNA genome, this popular assumption has never been tested experimentally. Here we analyzed the viral RNA targeting by VIGS in tombusvirus-infected plants, and we show evidence that antiviral response of VIGS is based on viral RNA cleavage by RNA-induced silencing effector complex (RISC) programmed by virus-specific small interfering RNAs (siRNAs). In addition, we found that the RISC-mediated cleavages do not occur randomly on the viral genome. Indeed, sequence analysis of cloned cleavage products identified hot spots for target RNA cleavage, and the regions of specific RISC-mediated cleavages are asymmetrically distributed along the positive- and negative-sense viral RNA strands. In addition, we identified viral siRNAs containing high-molecular-mass protein complexes purified from the recovery leaves of the silencing suppressor mutant virus-infected plants. Strikingly, these large nucleoproteins cofractionated with microRNA-containing complexes, suggesting that these nucleoproteins are silencing related effector complexes.  相似文献   

18.
ABSTRACT: BACKGROUND: The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily ancient mechanism of signal transduction found in eukaryotic cells. In plants, MAPK cascades are associated with responses to various abiotic and biotic stresses such as plant pathogens. MAPK cascades function through sequential phosphorylation: MAPK kinase kinases (MAPKKKs) phosphorylate MAPK kinases (MAPKKs), and phosphorylated MAPKKs phosphorylate MAPKs. Of these three types of kinase, the MAPKKKs exhibit the most divergence in the plant genome. Their great diversity is assumed to allow MAPKKKs to regulate many specific signaling pathways in plants despite the relatively limited number of MAPKKs and MAPKs. Although some plant MAPKKKs, including the MAPKKKalpha of Nicotiana benthamiana (NbMAPKKKalpha), are known to play crucial roles in plant defense responses, the functional relationship among MAPKKK genes is poorly understood. Here, we performed a comparative functional analysis of MAPKKKs to investigate the signaling pathway leading to the defense response. RESULTS: We cloned three novel MAPKKK genes from N. benthamiana: NbMAPKKKbeta, NbMAPKKKgamma, and NbMAPKKKepsilon2. Transient overexpression of full-length NbMAPKKKbeta or NbMAPKKKgamma or their kinase domains in N. benthamiana leaves induced hypersensitive response (HR)-like cell death associated with hydrogen peroxide production. This activity was dependent on the kinase activity of the overexpressed MAPKKK. In addition, virus-induced silencing of NbMAPKKKbeta or NbMAPKKKgamma expression significantly suppressed the induction of programmed cell death (PCD) by viral infection. Furthermore, in epistasis analysis of the functional relationships among NbMAPKKKbeta, NbMAPKKKgamma, and NbMAPKKKalpha (previously shown to be involved in plant defense responses) conducted by combining transient overexpression analysis and virus-induced gene silencing, silencing of NbMAPKKKalpha suppressed cell death induced by the overexpression of the NbMAPKKKbeta kinase domain or of NbMAPKKKgamma, but silencing of NbMAPKKKbeta failed to suppress cell death induced by the overexpression of NbMAPKKKalpha or NbMAPKKKgamma. Silencing of NbMAPKKKgamma suppressed cell death induced by the NbMAPKKKbeta kinase domain but not that induced by NbMAPKKKalpha. CONCLUSIONS: These results demonstrate that in addition to NbMAPKKKalpha, NbMAPKKKbeta and NbMAPKKKgamma also function as positive regulators of PCD. Furthermore, these three MAPKKKs form a linear signaling pathway leading to PCD; this pathway proceeds from NbMAPKKKbeta to NbMAPKKKgamma to NbMAPKKKalpha.  相似文献   

19.
20.
Jia HF  Chai YM  Li CL  Lu D  Luo JJ  Qin L  Shen YY 《Plant physiology》2011,157(1):188-199
The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号