首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is an assumption of large, population-based datasets that samples are annotated accurately whether they correspond to known relationships or unrelated individuals. These annotations are key for a broad range of genetics applications. While many methods are available to assess relatedness that involve estimates of identity-by-descent (IBD) and/or identity-by-state (IBS) allele-sharing proportions, we developed a novel approach that estimates IBD0, 1, and 2 based on observed IBS within windows. When combined with genome-wide IBS information, it provides an intuitive and practical graphical approach with the capacity to analyze datasets with thousands of samples without prior information about relatedness between individuals or haplotypes. We applied the method to a commonly used Human Variation Panel consisting of 400 nominally unrelated individuals. Surprisingly, we identified identical, parent-child, and full-sibling relationships and reconstructed pedigrees. In two instances non-sibling pairs of individuals in these pedigrees had unexpected IBD2 levels, as well as multiple regions of homozygosity, implying inbreeding. This combined method allowed us to distinguish related individuals from those having atypical heterozygosity rates and determine which individuals were outliers with respect to their designated population. Additionally, it becomes increasingly difficult to identify distant relatedness using genome-wide IBS methods alone. However, our IBD method further identified distant relatedness between individuals within populations, supported by the presence of megabase-scale regions lacking IBS0 across individual chromosomes. We benchmarked our approach against the hidden Markov model of a leading software package (PLINK), showing improved calling of distantly related individuals, and we validated it using a known pedigree from a clinical study. The application of this approach could improve genome-wide association, linkage, heterozygosity, and other population genomics studies that rely on SNP genotype data.  相似文献   

2.
Gao G  Hoeschele I 《Genetics》2005,171(1):365-376
Identity-by-descent (IBD) matrix calculation is an important step in quantitative trait loci (QTL) analysis using variance component models. To calculate IBD matrices efficiently for large pedigrees with large numbers of loci, an approximation method based on the reconstruction of haplotype configurations for the pedigrees is proposed. The method uses a subset of haplotype configurations with high likelihoods identified by a haplotyping method. The new method is compared with a Markov chain Monte Carlo (MCMC) method (Loki) in terms of QTL mapping performance on simulated pedigrees. Both methods yield almost identical results for the estimation of QTL positions and variance parameters, while the new method is much more computationally efficient than the MCMC approach for large pedigrees and large numbers of loci. The proposed method is also compared with an exact method (Merlin) in small simulated pedigrees, where both methods produce nearly identical estimates of position-specific kinship coefficients. The new method can be used for fine mapping with joint linkage disequilibrium and linkage analysis, which improves the power and accuracy of QTL mapping.  相似文献   

3.
Dense sets of hundreds of thousands of markers have been developed for genome-wide association studies. These marker sets are also beneficial for linkage analysis of large, deep pedigrees containing distantly related cases. It is impossible to analyse jointly all genotypes in large pedigrees using the Lander–Green Algorithm, however, as marker density increases it becomes less crucial to analyse all individuals’ genotypes simultaneously. In this report, an approximate multipoint non-parametric technique is described, where large pedigrees are split into many small pedigrees, each containing just two cases. This technique is demonstrated, using phased data from the International Hapmap Project to simulate sets of 10,000, 50,000 and 250,000 markers, showing that it becomes increasingly accurate as more markers are genotyped. This method allows routine linkage analysis of large families with dense marker sets and represents a more easily applied alternative to Monte Carlo Markov Chain methods.  相似文献   

4.
Thompson E  Basu S 《Human heredity》2003,56(1-3):119-125
Our objective is the development of robust methods for assessment of evidence for linkage of loci affecting a complex trait to a marker linkage group, using data on extended pedigrees. Using Markov chain Monte Carlo (MCMC) methods, it is possible to sample realizations from the distribution of gene identity by descent (IBD) patterns on a pedigree, conditional on observed data YM at multiple marker loci. Measures of gene IBDW which capture joint genome sharing in extended pedigrees often have unknown and highly skewed distributions, particularly when conditioned on marker data. MCMC provides a direct estimate of the distribution of such measures. Let W be the IBD measure from data YM, and W* the IBD measure from pseudo-data Y*M simulated with the same data availability and genetic marker model as the true data YM, but in the absence of linkage. Then measures of the difference in distributions of W and W* provide evidence for linkage. This approach extracts more information from the data YM than either comparison to the pedigree prior distribution of W or use of statistics that are expectations of W given the data YM. A small example is presented.  相似文献   

5.
Browning SR 《Genetics》2008,178(4):2123-2132
I present a new approach for calculating probabilities of identity by descent for pairs of haplotypes. The approach is based on a joint hidden Markov model for haplotype frequencies and identity by descent (IBD). This model allows for linkage disequilibrium, and the method can be applied to very dense marker data. The method has high power for detecting IBD tracts of genetic length of 1 cM, with the use of sufficiently dense markers. This enables detection of pairwise IBD between haplotypes from individuals whose most recent common ancestor lived up to 50 generations ago.  相似文献   

6.
Multipoint quantitative-trait linkage analysis in general pedigrees.   总被引:49,自引:12,他引:37       下载免费PDF全文
Multipoint linkage analysis of quantitative-trait loci (QTLs) has previously been restricted to sibships and small pedigrees. In this article, we show how variance-component linkage methods can be used in pedigrees of arbitrary size and complexity, and we develop a general framework for multipoint identity-by-descent (IBD) probability calculations. We extend the sib-pair multipoint mapping approach of Fulker et al. to general relative pairs. This multipoint IBD method uses the proportion of alleles shared identical by descent at genotyped loci to estimate IBD sharing at arbitrary points along a chromosome for each relative pair. We have derived correlations in IBD sharing as a function of chromosomal distance for relative pairs in general pedigrees and provide a simple framework whereby these correlations can be easily obtained for any relative pair related by a single line of descent or by multiple independent lines of descent. Once calculated, the multipoint relative-pair IBDs can be utilized in variance-component linkage analysis, which considers the likelihood of the entire pedigree jointly. Examples are given that use simulated data, demonstrating both the accuracy of QTL localization and the increase in power provided by multipoint analysis with 5-, 10-, and 20-cM marker maps. The general pedigree variance component and IBD estimation methods have been implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package.  相似文献   

7.
QTL analysis in arbitrary pedigrees with incomplete marker information   总被引:3,自引:0,他引:3  
Vogl C  Xu S 《Heredity》2002,89(5):339-345
Mapping quantitative trait loci (QTL) in arbitrary outbred pedigrees is complicated by the combinatorial possibilities of allele flow relationships and of the founder allelic configurations. Exact methods are only available for rather short and simple pedigrees. Stochastic simulation using Markov chain Monte Carlo (MCMC) integration offers more flexibility. MCMC methods are less natural in a frequentist than in a Bayesian context, which we therefore adopt. Among the MCMC algorithms for updating marker locus genotypes, we implement the descent-graph algorithm. It can be used to update marker locus allele flow relationships and can handle arbitrarily complex pedigrees and missing marker information. Compared with updating marker genotypic information, updating QTL parameters, such as position, effects, and the allele flow relationships is relatively easy with MCMC. We treat the effect of each diploid combination of founder alleles as a random variable and only estimate the variance of these effects, ie, we model diploid genotypic effects instead of the usual partition in additive and dominance effects. This is a variant of the random model approach. The number of QTL alleles is generally unknown. In the Bayesian context, the number of QTL present on a linkage group can be treated as variable. Computer simulations suggest that the algorithm can indeed handle complex pedigrees and detect two QTL on a linkage group, but that the number of individuals in a single extended family is limited to about 50 to 100 individuals.  相似文献   

8.
George AW 《Genetics》2005,171(2):791-801
Mapping markers from linkage data continues to be a task performed in many genetic epidemiological studies. Data collected in a study may be used to refine published map estimates and a study may use markers that do not appear in any published map. Furthermore, inaccuracies in meiotic maps can seriously bias linkage findings. To make best use of the available marker information, multilocus linkage analyses are performed. However, two computational issues greatly limit the number of markers currently mapped jointly; the number of candidate marker orders increases exponentially with marker number and computing exact multilocus likelihoods on general pedigrees is computationally demanding. In this article, a new Markov chain Monte Carlo (MCMC) approach that solves both these computational problems is presented. The MCMC approach allows many markers to be mapped jointly, using data observed on general pedigrees with unobserved individuals. The performance of the new mapping procedure is demonstrated through the analysis of simulated and real data. The MCMC procedure performs extremely well, even when there are millions of candidate orders, and gives results superior to those of CRI-MAP.  相似文献   

9.
Summary .  Trait-model-free (or "allele-sharing") approach to linkage analysis is a popular tool in genetic mapping of complex traits, because of the absence of explicit assumptions about the underlying mode of inheritance of the trait. The likelihood framework introduced by Kong and Cox (1997,  American Journal of Human Genetics   61, 1179–1188) allows calculation of accurate p-values and LOD scores to test for linkage between a genomic region and a trait. Their method relies on the specification of a model for the trait-dependent segregation of marker alleles at a genomic region linked to the trait. Here we propose a new such model that is motivated by the desire to extract as much information as possible from extended pedigrees containing data from individuals related over several generations. However, our model is also applicable to smaller pedigrees, and has some attractive features compared with existing models ( Kong and Cox, 1997 ), including the fact that it incorporates information on both affected and unaffected individuals. We illustrate the proposed model on simulated and real data, and compare its performance with the existing approach ( Kong and Cox, 1997 ). The proposed approach is implemented in the program lm_ibdtests within the framework of MORGAN 2.8 ( http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml ).  相似文献   

10.
Our Markov chain Monte Carlo (MCMC) methods were used in linkage analyses of the Framingham Heart Study data using all available pedigrees. Our goal was to detect and map loci associated with covariate-adjusted traits log triglyceride (lnTG) and high-density lipoprotein cholesterol (HDL) using multipoint LOD score analysis, Bayesian oligogenic linkage analysis and identity-by-descent (IBD) scoring methods. Each method used all marker data for all markers on a chromosome. Bayesian linkage analysis detected a linkage signal on chromosome 7 for lnTG and HDL, corroborating previously published results. However, these results were not replicated in a classical linkage analysis of the data or by using IBD scoring methods.We conclude that Bayesian linkage analysis provides a powerful paradigm for mapping trait loci but interpretation of the Bayesian linkage signals is subjective. In the absence of a LOD score method accommodating genetically complex traits and linkage heterogeneity, validation of these signals remains elusive.  相似文献   

11.
An empirical comparison between three different methods for estimation of pair-wise identity-by-descent (IBD) sharing at marker loci was conducted in order to quantify the resulting differences in power and localization precision in variance components-based linkage analysis. On the examined simulated, error-free data set, it was found that an increase in accuracy of allele sharing calculation resulted in an increase in power to detect linkage. Linkage analysis based on approximate multi-marker IBD matrices computed by a Markov chain Monte Carlo approach was much more powerful than linkage analysis based on exact single-marker IBD probabilities. A "multiple two-point" approximation to true "multipoint" IBD computation was found to be roughly intermediate in power. Both multi-marker approaches were similar to each other in accuracy of localization of the quantitative trait locus and far superior to the single-marker approach. The overall conclusions of this study with respect to power are expected to also hold for different data structures and situations, even though the degree of superiority of one approach over another depends on the specific circumstances. It should be kept in mind, however, that an increase in computational accuracy is expected to go hand in hand with a decrease in robustness to various sources of errors.  相似文献   

12.
Tong L  Thompson E 《Human heredity》2008,65(3):142-153
To detect the positions of disease loci, lod scores are calculated at multiple chromosomal positions given trait and marker data on members of pedigrees. Exact lod score calculations are often impossible when the size of the pedigree and the number of markers are both large. In this case, a Markov Chain Monte Carlo (MCMC) approach provides an approximation. However, to provide accurate results, mixing performance is always a key issue in these MCMC methods. In this paper, we propose two methods to improve MCMC sampling and hence obtain more accurate lod score estimates in shorter computation time. The first improvement generalizes the block-Gibbs meiosis (M) sampler to multiple meiosis (MM) sampler in which multiple meioses are updated jointly, across all loci. The second one divides the computations on a large pedigree into several parts by conditioning on the haplotypes of some 'key' individuals. We perform exact calculations for the descendant parts where more data are often available, and combine this information with sampling of the hidden variables in the ancestral parts. Our approaches are expected to be most useful for data on a large pedigree with a lot of missing data.  相似文献   

13.
We analyse sequential Markov coalescent algorithms for populations with demographic structure: for a bottleneck model, a population-divergence model, and for a two-island model with migration. The sequential Markov coalescent method is an approximation to the coalescent suggested by McVean and Cardin, and by Marjoram and Wall. Within this algorithm we compute, for two individuals randomly sampled from the population, the correlation between times to the most recent common ancestor and the linkage probability corresponding to two different loci with recombination rate R between them. These quantities characterise the linkage between the two loci in question. We find that the sequential Markov coalescent method approximates the coalescent well in general in models with demographic structure. An exception is the case where individuals are sampled from populations separated by reduced gene flow. In this situation, the correlations may be significantly underestimated. We explain why this is the case.  相似文献   

14.
BACKGROUND: Gastroschisis remains an epidemiologic and pathogenetic dilemma, with genetics not thought to play a significant role in its etiology. The purpose of this study was to determine which gastroschisis cases in the Utah Birth Defect Network (UBDN) were related and the excess familial risk among multigenerational families. METHODS: Gastroschisis cases born from 1997 through 2008 were identified from the statewide population‐based UBDN and linked with the Utah Population Database (UPDB) to access multigenerational pedigrees. We analyzed these pedigrees using the familial standardized incidence ratio (FSIR). RESULTS: Of the 284 UBDN gastroschisis cases, one in 40 (n = 7; 2.5%) were reported to have another affected family member. Among these seven cases, three had affected sib pairs and four reported either a distant cousin, paternal uncle, maternal half‐uncle, or paternal cousin with gastroschisis. UBDN‐UPDB–linked cases resulted in many multigenerational pedigrees with the same affected descendents through marriage. We selected 30 pedigrees for repeated analysis based on two parameters: highest FSIRs with a p ≤ 0.01 and ≥2 cases. In these 30 pedigrees, FSIRs ranged from 3.7 to 93.5 (p < 0.009), each with two to eight distantly related cases (n = 64 distinct cases, representing 23% of the 284). CONCLUSIONS: We found a statistically significant excess risk for gastroschisis because of familial factors. Similar to many other birth defects, gastroschisis may fit a multifactorial model of inheritance. The UBDN‐UPDB linkage provides a robust approach to investigating genetic factors. Genetic susceptibility should be further investigated because it may have a greater role in the etiology of gastroschisis than currently appreciated. Birth Defects Research (Part A), 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
One of the most challenging areas in human genetics is the dissection of quantitative traits. In this context, the efficient use of available data is important, including, when possible, use of large pedigrees and many markers for gene mapping. In addition, methods that jointly perform linkage analysis and estimation of the trait model are appealing because they combine the advantages of a model-based analysis with the advantages of methods that do not require prespecification of model parameters for linkage analysis. Here we review a Markov chain Monte Carlo approach for such joint linkage and segregation analysis, which allows analysis of oligogenic traits in the context of multipoint linkage analysis of large pedigrees. We provide an outline for practitioners of the salient features of the method, interpretation of the results, effect of violation of assumptions, and an example analysis of a two-locus trait to illustrate the method.  相似文献   

16.
Methods for detecting genetic linkage are more powerful when they fully use all of the data collected from pedigrees. We first discuss a method for obtaining the probability that a pedigree member has a given genotype, conditional on the phenotypes of his relatives. We then develop a rapid method to obtain the conditional probabilities of identity-by-descent sharing of marker alleles for all related pairs of individuals from extended pedigrees. The method assumes that the individuals are noninbred and that the relationship between genotype and phenotype is known for the marker locus studied. The probabilities of identity-by-descent sharing among relative pairs, conditional on marker phenotype information, can then be used in any of the model free tests for linkage between a trait locus and a marker locus.  相似文献   

17.
一般家系二分类性状的贝叶斯连锁分析方法   总被引:1,自引:1,他引:0  
应用阈值模型和可逆的跳跃马尔可夫链方法提出一种适用于人类一般家系中复杂二分类性状基因定位的连锁分析方法,此方法可以同时估计易感基因位点的数目与位置。  相似文献   

18.
We present a new method of quantitative-trait linkage analysis that combines the simplicity and robustness of regression-based methods and the generality and greater power of variance-components models. The new method is based on a regression of estimated identity-by-descent (IBD) sharing between relative pairs on the squared sums and squared differences of trait values of the relative pairs. The method is applicable to pedigrees of arbitrary structure and to pedigrees selected on the basis of trait value, provided that population parameters of the trait distribution can be correctly specified. Ambiguous IBD sharing (due to incomplete marker information) can be accommodated in the method by appropriate specification of the variance-covariance matrix of IBD sharing between relative pairs. We have implemented this regression-based method and have performed simulation studies to assess, under a range of conditions, estimation accuracy, type I error rate, and power. For normally distributed traits and in large samples, the method is found to give the correct type I error rate and an unbiased estimate of the proportion of trait variance accounted for by the additive effects of the locus-although, in cases where asymptotic theory is doubtful, significance levels should be checked by simulations. In large sibships, the new method is slightly more powerful than variance-components models. The proposed method provides a practical and powerful tool for the linkage analysis of quantitative traits.  相似文献   

19.
Misspecified relationships can have serious consequences for linkage studies, resulting in either reduced power or false-positive evidence for linkage. If some individuals in the pedigree are untyped, then Mendelian errors may not be observed. Previous approaches to detection of misspecified relationships by use of genotype data were developed for sib and half-sib pairs. We extend the likelihood calculations of G?ring and Ott and Boehnke and Cox to more-general relative pairs, for which identity-by-descent (IBD) status is no longer a Markov chain, and we propose a likelihood-ratio test. We also extend the identity-by-state (IBS)-based test of Ehm and Wagner to nonsib relative pairs. The likelihood-ratio test has high power, but its drawbacks include the need to construct and apply a separate Markov chain for each possible alternative relationship and the need for simulation to assess significance. The IBS-based test is simpler but has lower power. We propose two new test statistics-conditional expected IBD (EIBD) and adjusted IBS (AIBS)-designed to retain the simplicity of IBS while increasing power by taking into account chance sharing. In simulations, the power of EIBD is generally close to that of the likelihood-ratio test. The power of AIBS is higher than that of IBS, in all cases considered. We suggest a strategy of initial screening by use of EIBD and AIBS, followed by application of the likelihood-ratio test to only a subset of relative pairs, identified by use of EIBD and AIBS. We apply the methods to a Genetic Analysis Workshop 11 data set from the Collaborative Study on the Genetics of Alcoholism.  相似文献   

20.

Background

The ability to identify regions of the genome inherited with a dominant trait in one or more families has become increasingly valuable with the wide availability of high throughput sequencing technology. While a number of methods exist for mapping of homozygous variants segregating with recessive traits in consanguineous families, dominant conditions are conventionally analysed by linkage analysis, which requires computationally demanding haplotype reconstruction from marker genotypes and, even using advanced parallel approximation implementations, can take substantial time, particularly for large pedigrees. In addition, linkage analysis lacks sensitivity in the presence of phenocopies (individuals sharing the trait but not the genetic variant responsible). Combinatorial Conflicting Homozygosity (CCH) analysis uses high density biallelic single nucleotide polymorphism (SNP) marker genotypes to identify genetic loci within which consecutive markers are not homozygous for different alleles. This allows inference of identical by descent (IBD) inheritance of a haplotype among a set or subsets of related or unrelated individuals.

Results

A single genome-wide conflicting homozygosity analysis takes <3 seconds and parallelisation permits multiple combinations of subsets of individuals to be analysed quickly. Analysis of unrelated individuals demonstrated that in the absence of IBD inheritance, runs of no CH exceeding 4 cM are not observed. At this threshold, CCH is >97% sensitive and specific for IBD regions within a pedigree exceeding this length and was able to identify the locus responsible for a dominantly inherited kidney disease in a Turkish Cypriot family in which six out 17 affected individuals were phenocopies. It also revealed shared ancestry at the disease-linked locus among affected individuals from two different Cypriot populations.

Conclusions

CCH does not require computationally demanding haplotype reconstruction and can detect regions of shared inheritance of a haplotype among subsets of related or unrelated individuals directly from SNP genotype data. In contrast to parametric linkage allowing for phenocopies, CCH directly provides the exact number and identity of individuals sharing each locus. CCH can also identify regions of shared ancestry among ostensibly unrelated individuals who share a trait. CCH is implemented in Python and is freely available (as source code) from http://sourceforge.net/projects/cchsnp/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1360-4) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号