首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain organophosphates react with the active site serine residue of neuropathy target esterase (NTE) and cause axonal degeneration and paralysis. Cloning of NTE revealed the presence of homologues in eukaryotes from yeast to man and that the protein has both a catalytic and a regulatory domain. The latter contains sequences similar to the regulatory subunit of protein kinase A, suggesting that NTE may bind cyclic AMP. NTE is tethered via an amino-terminal transmembrane segment to the cytoplasmic face of the endoplasmic reticulum. Unlike wild-type yeast, mutants lacking NTE activity cannot deacylate CDP-choline pathway-synthesized phosphatidylcholine (PtdCho) to glycerophosphocholine (GroPCho) and fatty acids. In cultured mammalian cells, GroPCho levels rise and fall, respectively, in response to experimental over-expression, and inhibition, of NTE. A complex of PtdCho and Sec14p, a yeast phospholipid-binding protein, both inhibits the rate-limiting step in PtdCho synthesis and enhances deacylation of PtdCho by NTE. While yeast can maintain PtdCho homeostasis in the absence of NTE, certain post-mitotic metazoan cells may not be able to, and some NTE-null animals have deleterious phenotypes. NTE is not required for cell division in the early mammalian embryo or in larval and pupal forms of Drosophila, but is essential for placenta formation and survival of neurons in the adult. In vertebrates, the relative importance of NTE and calcium-independent phospholipase A2 for homeostatic PtdCho deacylation in particular cell types, possible interactions of NTE with Sec14p homologues and cyclic AMP, and whether deranged phospholipid metabolism underlies organophosphate-induced neuropathy are areas which require further investigation.  相似文献   

2.
Neuropathy target esterase in hens after sarin and soman   总被引:1,自引:0,他引:1  
To estimate the potential of small doses of sarin (types I and II) and soman to cause delayed neuropathic effects, 400, 200, 61, and 0 micrograms/kg of sarin-I, 280, 140, 70, and 0 micrograms/kg of sarin-II, and 14.2, 7.1, 3.5, and 0 micrograms/kg of soman by gavage were compared with 510 mg/kg tri-o-cresyl phosphate (TOCP) in 14- to 18-month-old SPF white leghorn hens (4/dose) protected with atropine (100 mg/kg). The neuropathy target esterase (NTE) activity 24 hr after dosing was determined in brain, spinal cord, and lymphocytes and in plasma and brain for cholinesterase and carboxylesterase. None of the compounds showed statistically significant NTE decreases. Sarin-II showed a dose-related trend in the lymphocyte NTE (to 33% of control at 280 micrograms/kg), suggesting that longer exposure to lower doses might cause a cumulative neurotoxic insult. All of the agents decreased the activity of plasma and brain cholinesterase and carboxylesterase. Using more than 70% inhibition of brain NTE as a biochemical predictor of delayed neuropathy, sarin and soman appear unable to cause delayed neuropathy at nonlethal doses within this protocol.  相似文献   

3.
Neurofilaments and motor neuron disease   总被引:3,自引:0,他引:3  
Amyotrophic lateral sclerosis (ALS) is an adult-onset and heterogeneous neurological disorder that affects primarily motor neurons in the brain and spinal cord. Although multiple genetic and environmental factors might be implicated in ALS, the striking similarities in the clinical and pathological features of sporadic ALS and familial ALS suggest that similar mechanisms of disease may occur. A common and perhaps universal pathological finding in ALS is the presence of abnormal accumulations of neurofilaments (often called spheroids or Lewy body-like deposits) in the cell body and proximal axon of surviving motor neurons. Such neurofilament deposits have been widely viewed as a consequence of neuronal dysfunction, perhaps reflecting axonal transport defects. This review discusses the emerging evidence, based primarily on transgenic mouse studies and on the discovery of deletion mutations in a neurofilament gene associated with ALS, that neurofilament proteins can play a causative role in motor neuron disease.  相似文献   

4.
Neuropathy target esterase (NTE) is an endoplasmic reticulum-anchored protein conserved across species. The N-terminal regulatory region of NTE contains three cyclic nucleotide binding domains while the C-terminal catalytic domain has a patatin domain. The NTE gene is expressed in mouse early at embryonic day 7 and its expression is maintained throughout embryonic development. NTE protein is mainly distributed in the nervous system with a pattern that is more restricted to large neurons in older animals. NTE regulates phospholipid metabolism and is known to be a phospholipase B. Knockout of NTE is embryonic lethal in mice, indicating that NTE is essential for embryonic survival. Neuronal specific NTE knockouts survive to adulthood, but show vacuolation and neuronal loss characteristic of neurodegenerative diseases. Recently, mutations in human NTE have been shown to cause a hereditary spastic paraplegia called NTE-related motor neuron disorder, suggesting a critical role for NTE in the nervous system.  相似文献   

5.
6.
Eukaryotic cells control the levels of their major membrane lipid, phosphatidylcholine (PtdCho), by balancing synthesis with degradation via deacylation to glycerophosphocholine (GroPCho). Here we present evidence that in both yeast and mammalian cells this deacylation is catalyzed by neuropathy target esterase (NTE), a protein originally identified by its reaction with organophosphates, which cause nerve axon degeneration. YML059c, a Saccharomyces cerevisiae protein with sequence homology to NTE, had similar catalytic properties to the mammalian enzyme in assays of microsome preparations and, like NTE, was localized to the endoplasmic reticulum. Yeast lacking YML059c were viable under all conditions examined but, unlike the wild-type strain, did not convert PtdCho to GroPCho. Despite the absence of the deacylation pathway, the net rate of [(14)C]choline incorporation into PtdCho in YML059c-null yeast was not greater than that in the wild type; this was because, in the null strain diminished net uptake of extracellular choline and decreased formation of the rate-limiting intermediate, CDP-choline, resulted in a reduced rate of PtdCho synthesis. In [(14)C]choline labeling experiments with cultured mammalian cell lines, production of [(14)C]GroPCho was enhanced by overexpression of catalytically active NTE and was diminished by reduction of endogenous NTE activity mediated either by RNA interference or organophosphate treatment. We conclude that NTE and its homologues play a central role in membrane lipid homeostasis.  相似文献   

7.
Motor neuron disease is a general term applied to a broad class of neurodegenerative diseases that are characterized by fatally progressive muscular weakness, atrophy, and paralysis attributable to loss of motor neurons. At present, there is no cure for most motor neuron diseases, including amyotrophic lateral sclerosis (ALS), the most common human motor neuron disease--the cause of which remains largely unknown. Animal models of motor neuron disease (MND) have significantly contributed to the remarkable recent progress in understanding the cause, genetic factors, and pathologic mechanisms proposed for this class of human neurodegenerative disorders. Largely driven by ALS research, animal models of MND have proven their usefulness in elucidating potential causes and specific pathogenic mechanisms, and have helped to advance promising new treatments from "benchside to bedside." This review summarizes important features of selected established animal models of MND: genetically engineered mice and inherited or spontaneously occurring MND in the murine, canine, and equine species.  相似文献   

8.
9.
Retrograde axonal transport and motor neuron disease   总被引:2,自引:0,他引:2  
Transport of material between extensive neuronal processes and the cell body is crucial for neuronal function and survival. Growing evidence shows that deficits in axonal transport contribute to the pathogenesis of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we review recent data indicating that defects in dynein-mediated retrograde axonal transport are involved in ALS etiology. We discuss how mutant copper-zinc superoxide dismutase (SOD1) and an aberrant interaction between mutant SOD1 and dynein could perturb retrograde transport of neurotrophic factors and mitochondria. A possible contribution of axonal transport to the aggregation and degradation processes of mutant SOD1 is also reviewed. We further consider how the interference with axonal transport and protein turnover by mutant SOD1 could influence the function and viability of motor neurons in ALS.  相似文献   

10.

Background

Marchiafava-Bignami disease (MBD) is a rare neurologic complication of chronic alcohol consumption that is characterized by callosal lesions involving demyelination and necrosis. Various reversible neurologic symptoms are found in patients with MBD. Dysarthria and dysphagia are found in various neurological diseases.

Case presentation

We report a 51-year-old man with chronic alcoholism and malnutrition who progressively developed dysarthria and dysphagia. On admission, the patient was alert with mild cognitive dysfunction. The facial expression was flat, and there was weakness of the orbicularis oris bilaterally. The patient’s speech was slurred, there was difficulty swallowing, and the gag reflex and palate elevation were poor. The jaw jerk reflex was brisk and the snout reflex was positive. Neither tongue atrophy nor fasciculation were found. Bilateral upper and lower limb weakness with increased bilateral upper limb reflexes and Babinski reflexes were found. Because he had progressive dysarthria and dysphagia with upper and lower motor neuron signs, the initial diagnosis was motor neuron disease. However, electrophysiological analysis was normal. The vitamin B1 level was 14 ng/mL (normal: >24 ng/mL), and MRI revealed hyperintense lesions in the splenium of the corpus callosum and the primary motor cortices bilaterally. After vitamin B therapy for 17 days, the neurological disorders alleviated concurrently with disappearance of the lesions on MRI, which led to the definitive diagnosis of MBD.

Conclusions

MBD presenting with these lesions can mimic motor neuron disease clinically.
  相似文献   

11.
Although the Madras motor neuron disease (MMND) was found three decades ago, its genetic basis has not been elucidated, so far. The symptom at onset was impaired hearing, upper limb weakness and atrophy. Since some clinical features of MMND overlap with mitochondrial disorders, we analyzed the complete mitochondrial genome of 45 MMND patients and found 396 variations, including 13 disease-associated, 2 mt-tRNA and 33 non-synonymous (16 MT-ND, 10 MT-CO, 3 MT-CYB and 4 MT-ATPase). A rare variant (m.8302A>G) in mt-tRNALeu was found in three patients. We predict that these variation(s) may influence the disease pathogenesis along with some unknown factor(s).  相似文献   

12.
Motor neuron diseases (MND) are a heterogeneous group of disorders that includes amyotrophic lateral sclerosis (ALS) and result in death of motor neurons. These diseases may produce characteristic perturbations of the metabolome, the collection of small-molecules (metabolites) present in a cell, tissue, or organism. To test this hypothesis, we used high performance liquid chromatography followed by electrochemical detection to profile blood plasma from 28 patients with MND and 30 healthy controls. Of 317 metabolites, 50 were elevated in MND patients and more than 70 were decreased (p<0.05). Among the compounds elevated, 12 were associated with the drug Riluzole. In a subsequent study of 19 subjects with MND who were not taking Riluzole and 33 healthy control subjects, six compounds were significantly elevated in MND, while the number of compounds with decreased concentration was similar to study 1. Our data also revealed a distinctive signature of highly correlated metabolites in a set of four patients, three of whom had lower motor neuron (LMN) disease. In both datasets we were able to separate MND patients from controls using multivariate regression techniques. These results suggest that metabolomic studies can be used to ascertain metabolic signatures of disease in a non-invasive fashion. Elucidation of the structures of signature molecules in ALS and other forms of MND should provide insight into aberrant biochemical pathways and may provide diagnostic markers and targets for drug design.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. S.R., M.E.C. and M.B. contributed equally to this work. W.R.M. and B.S.K. contributed equally to this work. S.R., M.B., W.R.M., B.S.K., C.B., S.H., P.V., M.F.B., and R.K-D. have financial interests in Metabolon Inc., a company engaged in metabolic profiling. ††Electronic supporting figures, tables and datasets are available at the Journal’s website.*To whom corrsepondence should be addressed.E-mail: kaddu001@mc.duke.eduCurrent address: Duke University Medical Center, Department of Psychiatry, P.O. Box 3950, Durham, NC 27710.  相似文献   

13.
Parkinson's disease (PD; OMIM #168600) is the second most common neurodegenerative disorder in the Western world and presents as a progressive movement disorder. The hallmark pathological features of PD are loss of dopaminergic neurons from the substantia nigra and neuronal intracellular Lewy body inclusions. Parkinsonism is typically sporadic in nature; however, several rare familial forms are linked to genetic loci, and the identification of causal mutations has provided insight into the disease process. PARK8, identified in 2002 by Funayama and colleagues, appears to be a common cause of familial PD. We describe here the cloning of a novel gene that contains missense mutations segregating with PARK8-linked PD in five families from England and Spain. Because of the tremor observed in PD and because a number of the families are of Basque descent, we have named this protein dardarin, derived from the Basque word dardara, meaning tremor.  相似文献   

14.
We report two novel mutations in three cases of spinal muscular atrophy (SMA), including two distant cousins who followed an unexpectedly severe course. Diagnosis was confirmed by reduced SMN protein and full-length SMN mRNA levels. Sequencing of the non-deleted SMN1 gene revealed a single G insertion at the end of exon 1 in the two cousins and a novel G275S exon 6 missense mutation in the milder case.  相似文献   

15.
16.
Significant progress has been made in the identification of genes and chromosomal loci associated with several types of motor neuron disease. Of particular interest is recent work on the pathogenic mechanisms underlying these diseases, especially studies in in vitro model systems and in transgenic and gene-targeted mice.  相似文献   

17.
Choline acetyltransferase (ChAT) synthesizes acetylcholine in neurons and other cell types. Decreases in ChAT activity are associated with a number of disease states, and mutations in ChAT cause congenital neuromuscular disorders. The crystal structure of ChAT reported here shows the enzyme divided into two domains with the active site in a solvent accessible tunnel at the domain interface. A low-resolution view of the complex with one substrate, coenzyme A, defines its binding site and suggests an additional interaction not found in the related carnitine acetyltransferase. Also, the preference for choline over carnitine as an acetyl acceptor is seen to result from both electrostatic and steric blocks to carnitine binding at the active site. While half of the mutations that cause motor disorders are positioned to affect enzyme activity directly, the remaining changes are surprisingly distant from the active site and must exert indirect effects. The structure indicates how ChAT is regulated by phosphorylation and reveals an unusual pattern of basic surface patches that may mediate membrane association or macromolecular interactions.  相似文献   

18.
19.
20.
Motor neuron disease (MND), or amyotrophic lateral sclerosis, is a fatal neurodegenerative disorder characterized by a progressive loss of motor neurons in the spinal cord and the brain. Several angiogenic and neurogenic growth factors, such as the vascular endothelial growth factor (VEGF), angiogenin (ANG), insulin-like growth factor (IGF) and others, have been shown to promote survival of the spinal motor neurons during ischemia. We constructed recombinant vectors using human adenovirus 5 (Ad5) carrying the VEGF, ANG or IGF genes under the control of the cytomegalovirus promoter. As a model for MND, we employed a transgenic mice strain, B6SJL-Tg(SOD1*G93A)dl1 Gur/J that develops a progressive degeneration of the spinal motor neurons caused by the expression of a mutated Cu/Zn superoxide dismutase gene SOD1 G93A. Delivery of the therapeutic genes to the spinal motor neurons was done using the effect of the retrograde axonal transport after multiple injections of the Ad5-VEGF, Ad5-ANG and Ad5-IGF vectors and their combinations into the limbs and back muscles of the SOD1 G93A mice. Viral transgene expression in the spinal cord motor neurons was confirmed by immunocytochemistry and RT-RCR. We assessed the neurological status, motor activity and lifespan of experimental and control animal groups. We discovered that SOD1 G93A mice injected with the Ad5-VEGF + Ad5-ANG combination showed a 2–3 week delay in manifestation of the disease, higher motor activity at the advanced stages of the disease, and at least a 10% increase in the lifespan compared to the control and other experimental groups. These results support the safety and therapeutic efficacy of the tested recombinant treatment. We propose that the developed experimental MND treatment based on viral delivery of VEGF + AGF can be used as a basis for gene therapy drug development and testing in the preclinical and clinical trials of the MND.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号