首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
The RNA sequences boxA, boxB and boxC constitute the nut regions of phage λ. They nucleate the formation of a termination-resistant RNA polymerase complex on the λ chromosome. The complex includes E. coli proteins NusA, NusB, NusG and NusE, and the λ N protein. A complex that includes the Nus proteins and other factors forms at the rrn leader. Whereas RNA-binding by NusB and NusE has been described in quantitative terms, the interaction of NusA with these RNA sequences is less defined. Isotropic as well as anisotropic fluorescence equilibrium titrations show that NusA binds only the nut spacer sequence between boxA and boxB. Thus, nutR boxA5-spacer, nutR boxA16-spacer and nutR boxA69-spacer retain NusA binding, whereas a spacer mutation eliminates complex formation. The affinity of NusA for nutL is 50% higher than for nutR. In contrast, rrn boxA, which includes an additional U residue, binds NusA in the absence of spacer. The Kd values obtained for rrn boxA and rrn boxA-spacer are 19-fold and 8-fold lower, respectively, than those for nutR boxA-spacer. These differences may explain why λ requires an additional protein, λ N, to suppress termination. Knowledge of the different affinities now describes the assembly of the anti-termination complex in quantitative terms.  相似文献   

3.
A recombinant heterodimeric NusB/NusE protein complex of Escherichia coli was expressed under the control of a synthetic mini operon. Surface plasmon resonance measurements showed that the heterodimer complex has substantially higher affinity for the boxA RNA sequence motif of the ribosomal RNA (rrn) operons of E.coli as compared to monomeric NusB protein. Single base exchanges in boxA RNA reduced the affinity of the protein complex up to 15-fold. The impact of base exchanges in the boxA RNA on the interaction with NusB protein was studied by (1)H,(15)N heterocorrelation NMR spectroscopy. Spectra obtained with modified RNA sequences were analysed by a novel generic algorithm. Replacement of bases in the terminal segments of the boxA RNA motif caused minor chemical shift changes as compared to base exchanges in the central part of the dodecameric boxA motif.  相似文献   

4.
5.
6.
The regulation of ribosomal RNA biosynthesis in Escherichia coli by antitermination requires binding of NusB protein to a dodecamer sequence designated boxA on the nascent RNA. The affinity of NusB protein for boxA RNA exceeds that for the homologous DNA segment by more than three orders of magnitude as shown by surface plasmon resonance measurements. DNA RNA discrimination by NusB protein was shown to involve methyl groups (i.e. discrimination of uracil versus thymine) and 2' hydroxyl groups (i.e. discrimination of ribose versus deoxyribose side-chains) in the RNA motif. Ligand perturbation experiments monitored by 1H15N correlation NMR experiments identified amide NH groups whose chemical shifts are affected selectively by ribose/deoxyribose exchange in the 5' and the central part of the dodecameric boxA motif respectively. The impact of structural modification of the boxA motif on the affinity for NusB protein as observed by 1H15N heterocorrelation was analysed by a generic algorithm.  相似文献   

7.
Analytical ultracentrifugation and fluorescence anisotropy methods have been used to measure the equilibrium parameters that control the formation of the core subcomplex of NusB and NusE proteins and boxA RNA. This subcomplex, in turn, nucleates the assembly of the antitermination complex that is involved in controlling the synthesis of ribosomal RNA in Escherichia coli and that also participates in forming the N protein-dependent antitermination complex in lambdoid phage synthesis. In this study we determined the dissociation constants (K(d) values) for the individual binary interactions that participate in the assembly of the ternary NusB-NusE-boxA RNA subassembly, and we showed that multiple equilibria, involving both specific and nonspecific binding, are involved in the assembly pathway of this protein-RNA complex. The measured K(d) values were used to model the in vitro assembly reaction and combined with in vivo concentration data to simulate the overall control of the assembly of this complex in E. coli at two different cellular growth rates. The results showed that at both growth rates assembly proceeds via the initial formation of a weak but specific NusB-boxA complex, which is then stabilized by NusE binding. We showed that NusE also binds nonspecifically to available single-stranded RNA sequences and that such nonspecific protein binding to RNA can help to regulate crucial interactions in the assembly of the various macromolecular machines of gene expression.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
RNA binding proteins control gene expression by the attenuation/antitermination mechanism. HutP is an RNA binding antitermination protein. It regulates the expression of hut operon when it binds with RNA by modulating the secondary structure of single-stranded hut mRNA. HutP necessitates the presence of l-histidine and divalent metal ion to bind with RNA. Herein, we report the crystal structures of ternary complex (HutP–l-histidine–Mg2+) and EDTA (0.5 M) treated ternary complex (HutP–l-histidine–Mg2+), solved at 1.9 Å and 2.5 Å resolutions, respectively, from Geobacillus thermodenitrificans. The addition of 0.5 M EDTA does not affect the overall metal-ion mediated ternary complex structure and however, the metal ions at the non-specific binding sites are chelated, as evidenced from the results of structural features.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号