首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four related ruthenium(III) complexes, with the formula mer-[RuCl3(dmso)(N−N)] (dmso = dimethyl sulfoxide; N−N = 2,2′-bipyridine (1), 1,10-phenantroline (2), dipyrido[3,2-f:2′,3′-h]quinoxaline (3) and dipyrido[3,2-a:2′,3′-c]phenazine (4)), have been reported. Complexes 3 and 4 are newly synthesized and characterized by X-ray diffraction. The hydrolysis process of 1-4 has been studied by UV-vis measurement, and it has been found that the extension of the N−N ligands can increase the stability of the complexes. The binding of these complexes with DNA has been investigated by plasmid cleavage assay, competitive binding with ethidium bromide (EB), DNA melting experiments and viscosity measurements. The DNA binding affinity is increased with the extension of the planar area of the N−N ligands, and complex 4 shows an intercalative mode of interaction with DNA. The in vitro anticancer activities of these compounds are moderate on the five human cancer cell lines screened.  相似文献   

2.
3.
Nucleotide excision repair (NER) is a vital cellular defense system against carcinogen-DNA adducts, which, if not repaired, can initiate cancer development. The structural features of bulky DNA lesions that account for differences in NER efficiencies in mammalian cells are not well understood. In vivo, the predominant DNA adduct derived from metabolically activated benzo[a]pyrene (BP), a prominent environmental carcinogen, is the 10S (+)-trans-anti-[BP]-N2-dG adduct (G*), which resides in the B-DNA minor groove 5′-oriented along the modified strand. We have compared the structural distortions in double-stranded DNA, imposed by this adduct, in the different sequence contexts 5′-…CGG*C…, 5′-…CG*GC…, 5′-…CIG*C… (I is 2′-deoxyinosine), and 5′-…CG*C…. On the basis of electrophoretic mobilities, all duplexes manifest moderate bends, except the 5′-…CGG*C…duplex, which exhibits an anomalous, slow mobility attributed to a pronounced flexible kink at the site of the lesion. This kink, resulting from steric hindrance between the 5′-flanking guanine amino group and the BP aromatic rings, both positioned in the minor groove, is abolished in the 5′-…CIG*C…duplex (the 2′-deoxyinosine group, I, lacks this amino group). In contrast, the sequence-isomeric 5′-…CG*GC…duplex exhibits only a moderate bend, but displays a remarkably increased opening rate at the 5′-flanking base pair of G*, indicating a significant destabilization of Watson-Crick hydrogen bonding. The NER dual incision product yields were compared for these different sequences embedded in otherwise identical 135-mer duplexes in cell-free human HeLa extracts. The yields of excision products varied by a factor of as much as ∼ 4 in the order 5′-...CG*GC…> 5′...CGG*C…≥ 5′...CIG*C…≥ 5′-…CG*C…. Overall, destabilized Watson-Crick hydrogen bonding, manifested in the 5′-...CG*GC...duplex, elicits the most significant NER response, while the flexible kink displayed in the sequence-isomeric 5′-...CGG*C...duplex represents a less significant signal in this series of substrates. These results demonstrate that the identical lesion can be repaired with markedly variable efficiency in different local sequence contexts that differentially alter the structural features of the DNA duplex around the lesion site.  相似文献   

4.
The effects of non-nearest base sequences, beyond the nucleotides flanking a DNA lesion on either side, on nucleotide excision repair (NER) in extracts from human cells were investigated. We constructed two duplexes containing the same minor groove-aligned 10S (+)-trans-anti-B[a]P-N2-dG (G?) DNA adduct, derived from the environmental carcinogen benzo[a]pyrene (B[a]P): 5′-C-C-A-T-C-G?-C-T-A-C-C-3′ (CG?C-I), and 5′-C-A-C3-A4-C5-G?-C-A-C-A-C-3′ (CG?C-II). We used polyacrylamide gel electrophoresis to compare the extent of DNA bending, and molecular dynamics simulations to analyze the structural characteristics of these two DNA duplexes. The NER efficiencies are 1.6(± 0.2)-fold greater in the case of the CG?C-II than the CG?C-I sequence context in 135-mer duplexes. Gel electrophoresis and self-ligation circularization experiments revealed that the CG?C-II duplex is more bent than the CG?C-I duplex, while molecular dynamics simulations showed that the unique -C3-A4-C5- segment in the CG?C-II duplex plays a key role. The presence of a minor groove-positioned guanine amino group, the Watson-Crick partner to C3, acts as a wedge; facilitated by a highly deformable local -C3-A4- base step, this amino group allows the B[a]P ring system to produce a more enlarged minor groove in CG?C-II than in CG?C-I, as well as a local untwisting and enlarged and flexible Roll only in the CG?C-II sequence. These structural properties fit well with our earlier findings that in the case of the family of minor groove 10S (+)-trans-anti-B[a]P-N2-dG lesions, flexible bends and enlarged minor groove widths constitute NER recognition signals, and extend our understanding of sequence context effects on NER to the neighbors that are distant to the lesion.  相似文献   

5.
Phytoecdysteroid glycosides (1-5) and a phenylpropanoid ester of sucrose (6) were isolated from the whole plant of Froelichia floridana, along with eight known compounds including three ecdysteroids (7-9), four flavonoids (10-13), and one phenolic compound (14). Structures were determined using a combination of spectroscopic techniques. Compounds 1, 2 and 6-14 were tested in vitro for their activity against human DNA topoisomerase I. Compound 13 (diosmetin) showed marginal inhibition against topoisomerase I with IC50 of 130 μM in conjunction with low intercalation ability.  相似文献   

6.
The Rh(III) polypyridyl complexes of the type [RhCl(pp)([9]aneS3)]2+ [(pp) = 2,2′-bipyridine (bpy), 2,2′-bipyrimidine (bpm),1,10-phenanthroline (phen), pyrazino[2,3-f]quinoxaline (tap), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz)] 2-7 have been prepared in a stepwise manner by treatment of RhCl3 · 3H2O with the appropriate polypyridyl ligand (pp) followed by 1,4,7-trithiacyclononane. Interactions of the polypyridyl complexes with DNA were investigated by CD and UV/visible spectroscopy and by gel electrophoresis. The dpq complex 6 cleaves DNA exiguously in the dark, but UV irradiation is required to induce nuclease activity for the bpy complex 2. Whereas 2 [IC50 values: 12.8 (±0.2) and 4.4 (±0.1) μM] exhibits significantly higher cytotoxicities towards MCF-7 and HT-29 cells than 4 [IC50 values: 36.3 (±6.0) and 72.2 (±8.0)], the activity of complexes in the series 4/6/7 correlates directly with the size of the polypyridyl ligand, as documented by their respective IC50 values of 72.2 (±8.0), 20.9 (±2.8) and 7.4 (±2.2) towards HT-29 cells. Complexes of the nitrogen-rich ligands bpm (3) [IC50 values: 1.7 (±0.5) and 1.9 (±0.1) μM] and tap (5) [IC50 values: 11.5 (±0.6) and 7.6 (±4.8) μM] are considerably more potent than their bpy and phen counterparts 2 and 4. Measurement of the lactate dehydrogenase release for lymphoma (BJAB) cells after 1 h incubation demonstrates that unspecific necrosis is negligible for the most active compounds 3 and 7. Specific cell death apoptosis via DNA fragmentation was detected for BJAB cells after 72 h incubation and significant loss of the mitochondrial membrane potential in lymphoma cells indicates that the intrinsic pathway is involved.  相似文献   

7.
8.
The facility of aminoalcohol ligand synthesis via ring opening of cyclohexene oxide with polyamines including a piperazine ring is illustrated here with the syntheses and characterization of (2′-hydroxycyclohexyl)piperazine (1), bis(2′-hydroxycyclohexyl)-piperazine (2), 4-{(2″-hydroxycyclohexyl)-2′-aminoethyl)}piperazine (3), 1-(2″-hydroxycyclohexyl)-4-{(2″-hydroxycyclohexyl)-2′-aminoethyl)}piperazine (4), and 1,4-bis[(2″-hydroxycyclohexyl)-3′-aminopropyl]piperazine (5) described, along with an analogue of 4 in which a single -CH2-CH2- alkyl chain replaces the piperazine ring, 1,5-bis[(2′-hydroxycyclohexyl)amine]-3-azapentane (6). The viability of 5 as a hexadentate ligand was established by preparation of its copper(II) complex and subsequent X-ray crystal structure analysis. The complex [Cu(5)](ClO4)2 cation lies in a distorted octahedral environment with the four nitrogen donors in an approximate plane also incorporating the copper (Cu-Ntert 2.058(4) A; Cu-Nsec 2.072(4) A) and the two alcohol groups occupying axial sites with elongated bonds (Cu-O 2.415(3) A). The piperazine ring adopts a ‘butterfly wing’ geometry, whereas the two cyclohexane rings are in chair conformations. Significant bond angle distortions occur around the copper, exacerbated by the axial Jahn-Teller bond length distortion. The ability of the copper(II) complexes of the aminoalcohols to promote DNA cleavage was examined. Complexes of 2, 3 and 5 are effectively inactive whereas 4 is an efficient single strand cleavage promoter; however, the more flexible close analogue of 4, 6, also proved ineffective. Such observations for a closely related series indicate the subtle influences of spectator ligand rigidity and steric congestion on DNA cleavage promotion.  相似文献   

9.
Chalcone type compound 1a ((E)-6′-benzylidene-4a′-methyl-4′,4a′,7′,8′-tetrahydro-3′H-spiro[[1,3]dithiolane-2,2′-naphthalen]-5′(6′H)-one) was discovered as an potent inhibitor in melanogenesis. To define its structure-activity relationship, a series of analogs 1b-n, dithiolane truncated 2a-b and ring A removed 3a-e were prepared and evaluated. The electron donating substitution on the phenyl ring (ring C) rather than an electron withdrawing group and dithiolane motif of 1 are needed for the activity enhancement. The scaffold containing both rings A and B associated with α,β-unsaturated system connected to phenyl of 1 was essential for antimelanogenesis.  相似文献   

10.
Two new Zn(II) complexes containing guanidinium groups, [Zn(L1)Cl2](ClO4)2 · H2O · CH3OH (1) and [Zn(L2)Cl2](ClO4)2 · 0.5H2O (2), were synthesized and characterized (L1 = 5,5′-di[1-(guanidyl)methyl]-2,2′-bipyridyl bication and L2 = 6,6′-di[1-(guanidyl)methyl]-2,2′-bipyridyl bication). Both complexes are able to catalyze bis(p-nitrophenyl) phosphate (BNPP) hydrolysis efficiently. Obtained kinetic data reveal that both 1 and 2 show nearly 300- and 600-fold rate enhancement of BNPP hydrolysis, respectively, compared to their simple analogue without the guanidinium groups [Zn(bpy)Cl2] (bpy = 2,2′-bipyridy) (3). Enhanced acceleration for cleavage of BNPP could be attributed to cooperative interaction between the Zn(II) ion and the guanidinium groups by electrostatic interaction and H-bonding. Studies on inhibition of sequence-specific endonucleases (DraI and SmaI) by complexes show that 1 and 2 are able to recognize nucleotide sequence, -TTT^AAA-, and highly effectively cleave the plasmid DNA in the presence of hydrogen peroxide, while 3 has no specific binding to the DNA target sequences and only shows low DNA cleavage activity.  相似文献   

11.
The DNA binding and in vitro cytotoxicity of the dinuclear Ir(III) polypyridyl complexes [{(η5-C5Me5)Ir(dppz)}2(μ-pyz)](CF3SO3)41 and [{(η5-C5Me5)Ir(pp)}2(μ-4,4′-bpy)](CF3SO3)42-4 (pp = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz), benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine (dppn)) with the rigid bridging ligands pyrazine (pyz) or 4,4′-bipyridine (4,4′-bpy) have been studied. Stable intercalative binding into CT DNA (calf thymus DNA) is indicated for the dppz complexes 1 and 3 by induced negative CD bands at about 300 nm and large viscosity increases, with the individual measurements being in accordance with intrastrand bis-intercalation for 3 and mono-intercalation for 1. The observed interruption of specific interresidue NOE cross peaks from the relevant nucleobase H6/H8 protons to the sugar H2′/H2″ protons of the preceding nucleotide is in accordance with bis-intercalation of complex 3 between the C3G18 and G4C17 base pairs and the T5A16 and A6T15 base pairs of the decanucleotide d(5′-CGCGTAGGCC-3′). Complexes 1 and 3 exhibit a greatly improved uptake by HT-29 (colon carcinoma) cells and significantly improved in vitro IC50 values of 1.8 ± 0.1 and 3.8 ± 0.1 μM towards this cell line in comparison to the mononuclear complex [(η5-C5Me5)IrCl(dppz)](CF3SO3) (IC50 = 7.4 ± 0.9 μM).  相似文献   

12.
We report herein the synthesis of a novel tetracationic tris(2,2′-bipyridine) ligand 4. We show that this ligand metalated with copper(II), and in the presence of ascorbate as a reducing agent, strongly damages pUC18 plasmid DNA. Copper complex formation was demonstrated by ESI-MS (electrospray ionization-mass spectrum) at a 1:3 ligand to metal ratio. Binding of both 4 and its copper(II) complex to CT-DNA (calf thymus DNA) was characterized by viscosimetry, thermal denaturation and fluorescence-based competition assays. The viscosimetric data indicated that 4 and its copper(II) complex bind DNA through partial intercalation and thermal denaturation studies revealed a significant increase of duplex DNA stability in the presence of these species (ΔTm = 16.4 and 18.3 °C, respectively). Moreover, 4 and its copper(II) complex were found to effectively compete with ethidium bromide for the intercalative binding sites of DNA. Overall, the copper(II)-4 complex constitutes a very efficient DNA cleaving agent in the presence of ascorbate. Experiments with scavengers further suggest that the generation of Cu(I), hydrogen peroxide, superoxide, hydroxyl radical and singlet oxygen-like species contributes to the DNA breakage induced by the Cu(II) complex of 4.  相似文献   

13.
Copper(II) complexes [Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H2satp) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near − 0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (~ 1.85 μB) are avid DNA binders giving Kb values within 1.0 × 105 − 8.0 × 105 M− 1. Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC50 = 8.3(± 1.0) μM) in visible light, while showing lower dark toxicity (IC50 = 17.2(± 1.0) μM). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC50 = 30.0(± 1.0) μM in dark), while retaining its photocytotoxicity (IC50 = 8.0(± 1.0) μM).  相似文献   

14.
A novel polypyridyl ligand CNPFIP (CNPFIP = 2-(5(4-chloro-2-nitrophenyl)furan-2-yl)-1H-imidazo[4,5f][1,10]phenanthroline) and its mononuclear Ru(II) polypyridyl complexes of [Ru(phen)2CNPFIP]2+(1) (phen = 1,10-phenanthroline), [Ru(bpy)2CNPFIP]2+(2) (bpy = 2,2′-bipyridine), and [Ru(dmb)2CNPFIP]2+(3) (dmb = 4,4′-dimethyl-2,2′-bipyridine) have been synthesized successfully and characterized thoroughly by elemental analysis, UV/Vis, IR, NMR, and ESI-MS. The interaction of the Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption titration, fluorescence, viscosity measurements. The experimental results suggest that three complexes bind to CT-DNA through an intercalative mode and the DNA-binding affinity of complex 1 is greater than that of complexes 2 and 3. The photocleavage of plasmid pBR322 DNA by ruthenium complexes 1, 2, and 3 was investigated. We have also tested three complexes for their antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The in vitro cytotoxicity of these complexes was evaluated by MTT assay, and complex 1 shows higher cytotoxicity than 2 and 3 on HeLa cells. The induced apoptosis and cell cycle arrest of HeLa cells were investigated by flow cytometry for 24 h. The molecular docking of ruthenium complexes 1, 2, and 3 with the active site pocket residues of human DNA TOP1 was performed using LibDock.  相似文献   

15.
Two series of novel bile acid tridentate conjugates with different linkers were synthesized and characterized, and their biological activities in vitro were evaluated. The procedure was straightforward and efficient to be carried out with high overall yield. The antimicrobial activity of the synthesized compounds against Saccharomyces cerevisiae, Aspergillus niger, Escherichia coli and Staphylococcus aureus was investigated in vitro. The best activity of minimal inhibitory concentrations (MICs) for 1c, 1c′, 2c and 2c′ against S. cerevisiae was up to 0.125 μg/mL.  相似文献   

16.
The cytostatic properties and cellular effects of novel diene-ruthenium(II) complexes of the types OC-6-13-[RuCl2(pp)(cod)] 1-5 (pp = 2,2′-bipyridyl (bpy), phen = 1,10-phenanthroline (phen), 5,6-dimethylphenanthroline (5,6-Me2phen), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), ethylenediamine (en)) and OC-6-24-[RuCl{(Me2N)2CS}(pp)(cod)](CF3SO3) 6-8 (pp = phen, 5,6-Me2phen, dpq) have been studied for the human cancer cell lines MCF-7 and HT-29 and for Jurkat leukemia cells. CD spectra indicate that 7 causes a massive distortion of the CT DNA B double helix toward the A form. Whereas the neutral complexes 1, 2 and 5 exhibit only modest antiproliferative activity toward MCF-7 and HT-29 cells, the monocationic complexes are significantly more active, in particular the DNA-distorting complex 7 with its IC50 values of 0.73 and 0.42 μM, respectively. As established by online monitoring with a cell-based sensor chip, this potent 5,6-Me2phen complex invokes dose-dependent decreases in MCF-7 cellular respiration and extracellular acidification rates and causes a time-delayed decrease in the impedance of the cell layers, that can be ascribed to cell death. Treatment of Jurkat cells with 7 leads to high concentrations of reactive oxygen species and the induction of apoptosis. The pronounced dose-dependent inhibition of oxygen consumption by isolated mice mitochondria indicates the involvement of an intrinsic mitochondrial pathway in the programmed cell death process.  相似文献   

17.
Four new ternary copper(II) complexes of α-amino acid having polypyridyl bases of general formulation [Cu(l-ala)(B)(H2O)](X) (1-4), where l-ala is l-alanine, B is an N,N-donor heterocyclic base, viz. 2,2′-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2) and 5,6-phenanthroline dione (dione, 3), dipyrido[3,2:2′,3′-f]quinoxaline (dpq, 4), and X = / are synthesized, characterized by various spectroscopic and X-ray crystallographic methods. The complexes show a distorted square-pyramidal (4 + 1) CuN3O2 coordination geometry. The one-electron paramagnetic complexes (1-4) display a low energy d-d band near 600 nm in aqueous medium and show a quasi-reversible cyclic voltammetric response due to one-electron Cu(II)/Cu(I) reduction near −100 mV (versus SCE) in DMF-0.1 M TBAP. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. All the complexes barring the complexes 1 and 3 are avid binder to the CT-DNA in the DNA minor groove giving an order: 4 > 2 ? 1, 3. The complexes 2 and 4 show appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent. Hydroxyl radical was investigated to be the DNA cleavage active species. Control experiments in the presence of distamycin-A show primarily minor groove-binding propensity for the complexes 2 and 4 to the DNA.  相似文献   

18.
A new series of dinuclear 2,5-pyrazine dicarboxylato-bridged copper(II) complexes were synthesized and characterized by spectroscopic techniques. The complexes have the general structural formula [Cu2(L)2(μ-pyzdc)](ClO4)2·nH2O where L = TPA, n = 2 (1); L = pmedien, n = 2 (2); L = aepn, n = 3 (3); L = dpt, n = 2 (4); L = Medpt, n = 0 (5); L = dien, n = 0 (6) and L = MeDPA, n = 2 (7) with TPA = tris(2-pyridylmethyl)amine, pmdien = N,N,N′,N′′,N′′-pentamethyldiethylenetriamine, aepn = N-(2-aminoethyl)-1,3-diaminopropane, dpt = dipropylene-triamine, Medpt = 3,3′-diamino-N-methyldipropylamine, dien = diethylenetriamine, MeDPA = N,N-di(2-pyridylmethyl)methylamine. In these complexes, the bridging nature of the 2,5-pyrazine dicarboxylato ligand (pyzdc) was confirmed by single-crystal X-ray crystallography. The structure of the TPA complex 1 consists of μ-pyzdc bridging two Cu(II) centers in a bis(monodentate) bonding fashion through a single oxygen atom supplied by each carboxylate group of the bridged pyzdc in a distorted trigonal bipyramidal geometry achieved by the four nitrogen atoms from the TPA ligand. In the complexes 2-5 derived from tridentate amines, the bridged pyzdc acts as a bis(bidentate) ligand in a distorted square pyramidal geometry achieved by one nitrogen and one carboxylate-oxygen of pyzdc, and by the three N-atoms of the amine coligands. The intradimer Cu?Cu distances in the complexes 2-5 are in the range 6.97-7.45 ? and in it is 10.96 ? in 1. The corresponding intermolecular distances are even shorter (5.34-7.99 ?). The susceptibility measurements at variable temperatures over the 5-300 K range reveal weak antiferromagnetic coupling with J values ranging from −0.61 to −4.78 cm−1.  相似文献   

19.
Ferromagnetic dicopper(II) complexes [Cu2(μ-O2CCH3)(μ-OH)(L)2(μ-L1)](PF6)2, where L = 1,10-phenanthroline (phen), L1 = H2O in 1 and L = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), L1 = CH3CN in 2, are prepared and structurally characterized. Crystals of 1 and 2 belong to the monoclinic space group of P21/n and P21/m, respectively. The copper(II) centers display distorted square-pyramidal geometry having a phenanthroline base and two oxygen atoms of the bridging hydroxo and acetate group in the basal plane. The fifth coordination site has weak axially bound bridging solvent molecule H2O in 1 and CH3CN in 2. The Cu···Cu distances are 3.034 and 3.046 Å in 1 and 2, respectively. The complexes show efficient hydrolytic cleavage of supercoiled pUC19 DNA as evidenced from the mechanistic studies that include T4 DNA ligase experiments. The binuclear complexes form monomeric copper(II) adducts [Cu(L)2(BNPP)](PF6) (L = phen, 3; dpq, 4) with bis(4-nitrophenyl)phosphate (BNPP) as a model phosphodiester. The crystal structures of 3 and 4 reveal distorted trigonal bipyramidal geometry in which BNPP binds through the oxygen atom of the phosphate. The kinetic data of the DNA cleavage reactions of the binuclear complexes under pseudo- and true-Michaelis-Menten conditions indicate remarkable enhancement in the DNA hydrolysis rate in comparison to the control data.  相似文献   

20.
Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN3O2S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near −1.0 V vs. SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 × 104-2.3 × 105 M−1. The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen (1O2) as the reactive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号