首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
Among African mole-rats, the giant mole-rat Fukomys mechowii is the largest social species. Despite several attempts to study a free-living population, information on its biology from natural habitats is very scarce. We mapped two neighbouring burrow systems of the giant mole-rat in a miombo woodland in Zambia. We provide information on the size and kin structure of the respective mole-rat families, architecture of their burrow systems, and characteristics of the food supply and soil around the two mapped and additional ten burrow systems. Both uncovered burrow systems were very large (total lengths, 2,245 and 743 m), making them the largest burrow systems ever mapped. Food resources around the additional ten burrow systems had a clumped distribution (standardized Morisita index of dispersion = 0.526), but a relatively high biomass (298 ± 455 g m−2). This, together with favourable soil conditions even in the advanced dry season (cone resistance, 328 ± 50 N m−2; soil density, 1.36 ± 0.06 g cm−3) indicates relatively hospitable ecological conditions. Both food supply and soil conditions were comparable with the conditions found in a miombo habitat of the solitary silvery mole-rat in Malawi. This suggests that there are no ecological constraints which would preclude the solitary life of a subterranean herbivore from the examined habitat. Microsatellite analysis supported the assumption that giant mole-rats live in monogamous multigenerational families with only one breeding pair of non-related animals and their offspring. The mean family size is consistent with previous findings on this species and comparable to that found in other Fukomys species studied thus far.  相似文献   

2.
In seasonal climatic regimes, animals have to deal with changing environmental conditions. It is reasonable to expect that seasonal changes are reflected in animal overall energetics. The relation between daily energy expenditure (DEE) and seasonally variable ecological determinants has been studied in many free-living small mammals; however with inconsistent results. Subterranean mammals, i.e. fossorial (burrowing) mammals which live and forage underground, live in a seasonally and diurnally thermally stable environment and represent a suitable model to test seasonality in DEE in respect to seasonal changes, particularly those in soil characteristics and access to food supply. Both factors are affected by seasonal rainfall and are supposed to fundamentally determine activity of belowground dwellers. These ecological constraints are pronounced in some tropical regions, where two distinct periods, dry and rainy seasons, regularly alternate. To explore how a tropical mammal responds to an abrupt environmental change, we determined DEE, resting metabolic rate (RMR) and sustained metabolic scope (SusMS) in a solitary subterranean rodent, the silvery mole-rat, at the end of dry season and the onset of rainy season. Whereas RMR did not differ between both periods, mole-rats had 1.4 times higher DEE and SusMS after the first heavy rains. These findings suggest that rainfall is an important environmental factor responsible for higher energy expenditure in mole-rats, probably due to increased burrowing activity. SusMS in the silvery mole-rat is comparable to values in other bathyergids and all bathyergid values rank among the lowest SusMS found in endothermic vertebrates.  相似文献   

3.
African mole-rats are subterranean rodents, which rarely if ever leave the safety of their burrow systems. The environment of the burrows is humid, with relatively stable temperatures, and may have a hypoxic and hypercapnic atmosphere. One of crucial problems related to the subterranean way of life in mammals is avoidance of overheating, because traditional mammalian cooling mechanisms are not effective under high humidity. In African mole-rats, a variety of adaptations have evolved in response to this and other challenges of the underground ecotope. Traditionally, attention has been devoted mainly to the naked mole-rat Heterocephalus glaber, which became popular as a result of its eusociality and absence of fur, both being unique phenomena in small mammals. Despite more recent research, information on other species is still relatively limited and patchy. I review the results of studies on African mole-rats that are relevant for the understanding of their energetics and thermal biology. Attention is paid to the parameters of the burrow environment, which represent the main selection pressures shaping their physiology. In addition, an overview is given of the morphological, physiological and behavioural adaptations helping mole-rats to face temperature extremes, mechanisms by which they deal with a surplus of metabolic heat and how changes in ambient temperature influence their daily activity. The naked mole-rat is compared to its furred relatives to determine whether this species is really exceptional from the point of thermal biology. An ordination analysis was conducted using published data on mole-rat body temperature, thermoneutral zone, resting metabolic rate and thermal conductance. Most of the variability in these characteristics was found to be explained by body mass, followed by temperature characteristics of climate, but not precipitation, of the species distributional ranges. This analysis shows that the naked mole-rat is comparable to the other mole-rat species in these physiological characteristics.  相似文献   

4.
The silvery mole-rat Heliophobius argenteocinereus (Bathyergidae) is a solitary subterranean rodent, widely distributed throughout eastern and south-eastern Africa in a variety of habitats. Here, we provide the first data on its biology in a typical natural habitat, the Brachystegia woodland. The population density of mole-rats was low (4.6 ha−1) and its distribution across the study site was random. Contrary to subadults and pups, the sex ratio of adult mole-rats was highly female biased (1:5.75), probably due to the higher mortality of males as a consequence of their mating strategy. Reproduction of Heliophobius is seasonal and pups are born at the beginning of the hot dry season. Burrow systems of the silvery mole-rat were long, highly branched, reticulated and comparable in fractal dimension to systems of social bathyergids. Variability in burrow architecture was related to the body mass of the burrow occupants, soil hardness and food supply when tested together. Burrow systems with a higher fractal dimension had inhabitants that had a greater body mass. Longer systems were less branched. Nests were typically deeper than foraging tunnels and experienced negligible temperature fluctuations. The microenvironmental characteristics of the subterranean niche including temperature, humidity and soil characteristics are provided for purpose of comparison with other mole-rat species.  相似文献   

5.

Background

African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure.

Methodology/Principal Findings

We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate.

Conclusions/Significance

The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology.  相似文献   

6.
《Chronobiology international》2013,30(8):1532-1545
African mole-rats (family Bathyergidae) are strictly subterranean rodent species that are rarely exposed to environmental light. Morphological and physiological adaptations to the underground environment include a severely reduced eye size and regressed visual system. Responses of the circadian system to light, however, appear to be intact, since mole-rats are able to entrain their circadian activity rhythms to the light-dark cycle and light induces Fos expression in the suprachiasmatic nucleus (SCN). Social organization varies from solitary species to highly elaborated eusocial structures, characterized by a distinct division of labor and in which one reproductive female regulates the behavior and reproductive physiology of other individuals in the colony. The authors studied light-induced Fos expression in the SCN to increasing light intensities in four mole-rat species, ranging from strictly solitary to highly social. In the solitary Cape mole-rat, light induces significant Fos expression in the SCN, and the number of Fos-immunopositive cells increases with increasing light intensity. In contrast, Fos induction in the SCN of social species was slightly greater than, but not statistically different from, the dark-control animals as is typical of most rodents. One species showed a trend for an increase in expression with increased light, whereas a second species showed no trend in expression. In the naked mole-rat, Fos expression appeared higher in the dark-controls than in the animals exposed to light, although the differences in Fos expression were not significant. These results suggest a gradient in the sensitivity of the circadian system to light in mole-rats, with a higher percentage of individuals that are unresponsive to light in correlation with the degree of sociality. In highly social species, such as the naked mole-rat that live in a relatively stable subterranean milieu in terms of food availability, temperature, constant darkness, and devoid of 24-h cyclic environmental cues, the temporal coordination of rest-wake activities may be dependent on social interactions and social status rather than on photic regulation of the circadian timing system. (Author correspondence: )  相似文献   

7.
Individuals and populations possess physiological adaptations to survive local environmental conditions. To occur in different regions where ambient temperature varies, animals must adopt appropriate thermoregulatory mechanisms. Failure to adjust to environmental challenges may result in species distributional range shifts or decreased viability. African mole-rats (Bathyergidae) occupy various habitats in sub-Saharan Africa from deserts to montane regions to mesic coastal areas. We examined thermoregulatory characteristics of three African mole-rat species originating from disparate (montane, savannah, and arid/semi-arid) habitats. Animals were exposed to various ambient temperatures, whilst core body temperature and the surface temperature of different body parts were measured. Oxygen consumption was determined as a measure of heat production. Core body temperatures of Natal (montane) mole-rats (Cryptomys hottentotus natalensis) increased significantly at ambient temperatures >24.5 °C, while those of the highveld (Cryptomys hottentotus pretoriae) (savannah) and Damaraland (Fukomys damarensis) (arid/semi-arid) mole-rats remained within narrower ranges. In terms of surface temperature variation, while pedal surfaces were important in regulating heat loss in Natal and Damaraland mole-rats at high ambient temperatures, the ventral surface was important for heat dissipation in Damaraland and highveld mole-rats. This study provides evidence of the variation and limitations of thermo-physiological mechanisms for three mole-rat species relative to their habitats. Information on physiological adaptations to particular habitats may inform predictive modelling of species movements, declines, and extinctions in response to a changing environment, such as climate change.  相似文献   

8.
Comparative studies of two species of mole-rat are helping to clarify the ecological correlates of mammalian eusociality. Both species live in social groups composed of close kin, within which breeding is restricted to one female and one to three males. They inhabit xeric areas with dispersed, patchy food and unpredictable rainfall. During droughts, they can neither expand their tunnel systems nor disperse. In brief periods after rain the animals must cooperate and dig furiously to locate rich food patches. By living in groups, arid-zone mole-rats can take full advantage of windows of opportunity when conditions are right for burrowing. Thus, ecological factors and kin selection have apparently interacted in the evolution of eusociality in these species.  相似文献   

9.
The mole-rat, Spalax ehrenbergi, is a complex subterranean rodent species whose habitat is restricted largely to the Middle East and North Africa. We typed over 50 mole-rats with mouse monoclonal and polyclonal antibodies specific for class I and class II major histocompatibility complex (Mhc) molecules. Some of these antibodies were produced against mouse Mhc molecules, others against Mhc molecules of other species. About 25% of the antibodies reacted with mole-rat lymphocytes in the cytotoxic test. Some of the serologically positive antibodies precipitated from a glycoprotein pool of mole-rat spleen cell molecules that corresponded in size with class I and class II molecules of other species. We conclude, therefore, that mole-rats, like other mammals, possess the Mhc which consists of class I and class 11 loci. We call this Mhc Spalax major histocompatibility (Smh) complex. The occurrence of a large number of different serotypes among the tested animals suggests that Smh loci are polymorphic. This Mhc polymorphism of the mole-rat contrasts with the monomorphism or oligomorphism of the Syrian hamster, a rodent with a similar ecology. Thus far no qualitative correlation could be found between Smh polymorphism and chromosome variation described in this superspecies.On leave from the Dept. of Physiology, University of Zagreb, Medical Faculty, Salata 3, Zagreb, Yugoslavia.  相似文献   

10.
A 900- to 1100-bp fragment encompassing intron 1 of the nuclear transthyretin (prealbumin) gene was examined in 12 taxa of Old World hystricognath rodents of the families Bathyergidae, Petromuridae, Thryonomyidae, and Hystricidae. Within the Bathyergidae, Heterocephalus glaber (naked mole-rat) was basal, and the other East African species, Heliophobius argenteocinereus (silvery mole-rat), was sister to a southern African clade containing Bathyergus, Cryptomys, and Georychus (dune, common, and cape mole-rats). These results are congruent with studies using mitochondrial 12S rRNA gene sequences. A combined analysis of transthyretin and 12S rRNA data resulted in a well-supported topology with better resolution than either gene analyzed separately. These data support the findings by M. W. Allard and R. L. Honeycutt (1992, Mol. Biol. Evol. 9: 27-40) and R. L. Honeycutt (1992, Am. Sci. 80: 43-53) that complex social systems evolved independently at least twice, in the common and naked mole-rats.  相似文献   

11.
DNA from 20 individuals from four wild colonies of naked mole-rats, Heterocephalus glaber , were analysed for restriction fragment length polymorphism of class I major histocompatibility complex genes and minisatellite DNA, both of which have been shown to be highly variable between individuals in other species. The minisatellite probe employed in this study revealed limited polymorphism in the DNA of naked mole-rats, both within and between neighbouring colonies. Of the two class I major histocompatibility complex probes, both showed a lack of polymorphism within colonies, while one revealed a single difference in the restriction fragment pattern between one colony and the other three. This probe also revealed a possible variation in copy number of genes in some individuals. The low numbers of bands on the restriction fragment pattern also indicated that the naked mole-rat MHC I, in contrast to that of other mammalian species, may contain relatively few genes homologous to the class I major histocompatibility complex of the mouse. The absence of variability in naked mole-rat DNA in these normally highly polymorphic loci suggests that there may be little or no genetic diversity either within or between closely neighbouring colonies of naked mole-rats in the wild. The lack of polymorphism in the MHC I questions its possible role in individual odour recognition in this species of rodent.  相似文献   

12.
13.
Vocalizations play a major role in communication of mammals with subterranean lifestyles since other senses are dramatically restricted in the environment of below ground burrows. In our study, we recorded vocalizations of 10 adult males and 10 adult females of a social bathyergid, the Mashona mole-rat (Fukomys darlingi) in different behavioural contexts. Vocalizations were divided into four categories according to behavioural contexts. Similar to other subterranean mammals, the range of Mashona mole-rat calls is shifted towards lower frequencies. We described 10 types of true vocal signals and 2 mechanical sounds. The vocal repertoire of the Mashona mole-rat is less rich compared to other social mole-rats, corresponding with its low mean family size. Interestingly, this species has a higher diversity in contact and distress calls, while using a relatively low number of aggressive signals.  相似文献   

14.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

15.

Background

The African mole-rats (Bathyergidae, Rodentia) are strictly subterranean, congenitally microphthalmic rodents that are hardly ever exposed to environmental light. Because of the lack of an overt behavioural reaction to light, they have long been considered to be blind. However, recent anatomical studies have suggested retention of basic visual capabilities. In this study, we employed behavioural tests to find out if two mole-rat species are able to discriminate between light and dark, if they are able to discriminate colours and, finally, if the presence of light in burrows provokes plugging behaviour, which is assumed to have a primarily anti-predatory function.

Methodology/Principal Finding

We used a binary choice test to show that the silvery mole-rat Heliophobius argenteocinereus and the giant mole-rat Fukomys mechowii exhibit a clear photoavoidance response to full-spectrum (“white”), blue and green-yellow light, but no significant reaction to ultraviolet or red light during nest building. The mole-rats thus retain dark/light discrimination capabilities and a capacity to perceive short to medium-wavelength light in the photopic range of intensities. These findings further suggest that the mole-rat S opsin has its absorption maximum in the violet/blue part of the spectrum. The assay did not yield conclusive evidence regarding colour discrimination. To test the putative role of vision in bathyergid anti-predatory behaviour, we examined the reaction of mole-rats to the incidence of light in an artificial burrow system. The presence of light in the burrow effectively induced plugging of the illuminated tunnel.

Conclusion/Significance

Our findings suggest that the photopic vision is conserved and that low acuity residual vision plays an important role in predator avoidance and tunnel maintenance in the African mole-rats.  相似文献   

16.
After the discovery of eusociality in the naked mole-rat, it was proposed that inbreeding and high colony relatedness in this species were the major underlying factors driving cooperative breeding in African molerats. By contrast, field and laboratory studies of the eusocial Damaraland mole-rat (Cryptomys damarensis) have raised the possibility that this species is an obligate outbreeder, although the build-up of inbreeding over several generations could still occur. Using microsatellite markers, we show that most breeding pairs in wild colonies of the Damaraland mole-rat are indeed unrelated (R = 0.02 +/- 0.04) and that mean colony relatedness (R = 0.46 +/- 0.01), determined across 15 colonies from three separate populations, is little more than half that previously identified in naked mole-rats. This finding demonstrates that normal familial levels of relatedness are sufficient for the occurrence of eusociality in mammals. Variation in the mean colony relatedness among populations provides support both for the central role played by ecological constraints in cooperative breeding and for the suggestion that inbreeding in naked mole-rats is a response to extreme constraints on dispersal. Approaches that determine the relative importance of an array of extrinsic factors in driving social evolution in African mole-rats are now required.  相似文献   

17.
We investigated reactions of free-living silvery mole-rats (Heliophobius argenteocinereus) to anthropogenic disturbances. Mole-rats detected soil vibrations caused by man carefully walking at a distance of up to 6 m (proved by radio-telemetry). Occasionally, mole-rats encountered outside a nest retreated there after this type of disturbance. After having their burrows broken into, the mole-rats retreated into deep tunnels, separating themselves from the rest of the burrows by soil plugs. Trapping success of silvery mole-rats using live traps for subterranean rodents was low, which contrasts with data so far published on social bathyergids. Antipredatory function of examined behaviours is discussed.  相似文献   

18.
In the Western Cape three species of mole-rat occur in sympatry, however, little is known about differences in their dietary preferences. Dietary composition of the three species; the common mole-rat (Cryptomys hottentotus hottentotus), the Cape mole-rat (Georychus capensis) and the Cape dune mole-rat (Bathyergus suillus) were examined using stable isotope analysis. Blood, fur and claw samples were collected from 70 mole-rats, in addition to several potential food items, to assess food selection of the three species under natural conditions. Overall there was a significant difference in the isotopic composition (δ13C and δ15N) between all three species and significant differences in their diet composition. There were also significant differences between tissues in all three species suggesting temporal variation in diet. The small size and colonial lifestyle of C. h. hottentotus allows it to feed almost 100% on bulbs, while the solitary and larger species G. capensis and B. suillus fed to a greater extent on other resources such as grasses and clover. B. suillus, the largest of the species, had the most generalized diet. However, overall all species relied most heavily upon geophytes and consumed the same species suggesting competition for resources could exist. We also showed a high level of individual variation in diet choices. This was most pronounced in B. suillus and G. capensis and less so in C. h. hottentotus. We demonstrate that stable isotope analysis can successfully be applied to examine dietary patterns in subterranean mammals and provide insights into foraging patterns and dietary variation at both the inter and intra population level.  相似文献   

19.
We investigated some of the ecological determinants of sociality in the Damaraland mole-rat, including the spatial distribution and biomass of resources (geophytes) available to foraging Damaraland mole-rats in partly vegetated sand dunes in the Kalahari and in grasslands near Dordabis, Namibia, and the foraging behaviour and residency characteristics of colonies at Dordabis. In both study areas, the geophytes had a clumped distribution, but the highest coefficients of dispersion and mean biomass occurred in the Kalahari where the principal food was the gemsbok cucumber. However, because the coefficient of digestibility was lower in geophytes from the Kalahari than from Dordabis, and the mole-rats only ate about half of a gemsbok cucumber, there was less energy available to mole-rats in the Kalahari. At Dordabis, large established colonies occur in the areas with the richest resources and remain resident in the same area for many years; within this area they search (blindly) for food during brief periods when the soil, at burrow depth, is moist and easily worked. Initially, long straight burrows are dug and few bulbs are taken; once the soil dries, minor changes are made to the burrow system as the mole-rats exploit the food patches they located immediately after the rain. Our results show that the characteristics of the resources, and the short time interval during which location of new resources is possible, favour group living; however, the constraints imposed by these features affect large and small colonies in different ways. Small colonies are more likely to fail than large ones and some crucial factors in the survival of these newly formed colonies are the richness of the area in which their burrows are located, and the size of the colony work force available to locate the food. Received: 6 May 1997 / Accepted: 21 August 1997  相似文献   

20.
Low resting metabolic rate (RMR) in subterranean rodents used to be considered as a physiological adaptation to cope with stresses of the belowground environment. In African mole-rats (Bathyergidae, Rodentia), RMR was reported to be independent of body mass. This deviation from a general mammalian pattern was considered a precondition for evolution of eusociality, occurring in some bathyergids. We measured metabolic rate and thermoregulation in the silvery mole-rat, Heliophobius argenteocinereus, the only bathyergid genus for which well-supported, comparable data were still missing. Low RMR (154.04 mL O(2) h(-1), which is 82% of the value predicted for a rodent) corresponds to the value expected in a subterranean rodent. Broad range of the thermoneutral zone (25-33 degrees C) and only slightly higher conductance (17.3 mL O(2) h(-1) degrees C(-1), i.e. 112.5% of that predicted for subterranean mammals) indicate that H. argenteocinereus is adapted to lower burrow temperatures rather than to high temperatures. Low RMR in this solitary species, as in other subterranean rodents in general, is probably associated particularly with high energetic cost of foraging. Our results combined with data on other mole-rats show clearly that RMR within the Bathyergidae is mass-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号