共查询到20条相似文献,搜索用时 0 毫秒
1.
Theta class glutathione transferases (GST) from various species exhibit markedly different catalytic activities in conjugating the tripeptide glutathione (GSH) to a variety of electrophilic substrates. For example, the human theta 1-1 enzyme (hGSTT1-1) is 440-fold less efficient than the rat theta 2-2 enzyme (rGSTT2-2) with the fluorogenic substrate 7-amino-4-chloromethyl coumarin (CMAC). Large libraries of hGSTT1-1 constructed by error-prone PCR, DNA shuffling, or saturation mutagenesis were screened for improved catalytic activity towards CMAC in a quantitative fashion using flow cytometry. An iterative directed evolution approach employing random mutagenesis in conjunction with homologous recombination gave rise to enzymes exhibiting up to a 20,000-fold increase in k(cat)/K(M) compared to hGSTT1-1. All highly active clones encoded one or more mutations at residues 32, 176, or 234. Combinatorial saturation mutagenesis was used to evaluate the full complement of natural amino acids at these positions, and resulted in the isolation of enzymes with catalytic rates comparable to those exhibited by the fastest mutants obtained via directed evolution. The substrate selectivities of enzymes resulting from random mutagenesis, DNA shuffling, and combinatorial saturation mutagenesis were evaluated using a series of distinct electrophiles. The results revealed that promiscuous substrate activities arose in a stochastic manner, as they did not correlate with catalytic efficiency towards the CMAC selection substrate. In contrast, chimeric enzymes previously constructed by homology-independent recombination of hGSTT-1 and rGSTT2-2 exhibited very different substrate promiscuity profiles, and showed a more defined relationship between evolved and promiscuous activities. 相似文献
2.
Pal R Sanil N Clark A 《Comparative biochemistry and physiology. Part D, Genomics & proteomics》2012,7(1):28-34
The glutathione transferases (GSTs) are a large group of enzymes having both detoxication roles and specialist metabolic functions. The present work represents an initial approach to identifying some of these roles by examining the variation of specific members of the family under differing conditions. The GSTs from Lucilia cuprina have been partially purified, members of two families being isolated, by the use of glutathione immobilised on epichlorhydrin-activated Sepharose 6B. The GSTs were separated by 2D SDS-PAGE and characterised by MALDI-TOF analysis of tryptic peptides. The mass fragments were then matched against the corresponding Drosophila melanogaster and Musca domestica sequences. GSTs were identified as coming from only the Sigma and Delta classes. The multiple Delta zones appear all to be derived from the Lucilia GSTD1 isoform. The distribution of these GST proteins has been studied during different developmental stages of the insect. Delta isoforms were present in all developmental stages of L. cuprina. The Sigma GST was not detectable in the egg, was just detectable in the larval and pupal stages and was the major GST isolated in the adult. Sigma and Delta isoforms were both found in all body segments of the insect. Both isoforms appear to undergo extensive post-translational modification. Activities of the two types of protein with model substrates have been determined. 相似文献
3.
Yoshimitsu Kakuta Kazuhiro Usuda Takashi Nakashima Makoto Kimura Yoichi Aso Kohji Yamamoto 《Biochimica et Biophysica Acta (BBA)/General Subjects》2011
Background
Glutathione transferase (GST) catalyzes a major step in the xenobiotic detoxification pathway. We previously identified a novel, unclassified GST that is upregulated in an insecticide-resistant silkworm (Bombyx mori) upon insecticide exposure. Here, we sought to further characterize this GST, bmGSTu, by solving and refining its crystal structure and identifying its catalytic residues.Methods
The structure of wild-type bmGSTu was determined with a resolution of 2.1 Å by synchrotron radiation and molecular modeling. Potential catalytic residues were mutated to alanine by means of site-directed mutagenesis, and kinetic data determined for wild-type and mutated bmGSTu.Results
We found that bmGSTu occurred as a dimer, and that, like other GSTs, each subunit displayed a G-site and an H-site in the active center. Bound glutathione could be localized at the G-site. Kinetic data of the mutated forms of bmGSTu show that Val55, Glu67, and Ser68 in the G-site are important for catalysis. Furthermore, the H-site showed some unique features.Conclusions
This is the first study to our knowledge to elucidate the molecular conformation of this B. mori GST. Our results indicate that residues Val55, Glu67, and Ser68, as well as Tyr7 and Ser12, in the glutathione-binding region of bmGSTu are critical for catalytic function.General Significance
Our results, together with our previous finding that bmGSTu was preferentially induced in an insecticide-resistant strain, support the idea that bmGSTu functions in the transformation of exogenous chemical agents. Furthermore, the unique features observed in bmGSTu may shed light on mechanisms of insecticide resistance. 相似文献4.
5.
Activities of epoxide hydratase and glutathione (GSH) S-transferase were investigated in subcellular fractions of Drosophila melanogaster, and these activities were compared with analogous enzymic activities in extracts from rat liver. Microsomes of Drosophila were active in the hydratation of styrene oxide catalyzed by epoxide hydratase. The post-microsomal supernatant of Drosophila catalyzed the conjugation of GSH with 1-chloro-2,4-dinitrobenzene. However, GSH S-transferase activity with styrene oxide as the electrophilic substrate was not measurable. The respective specific activities of epoxide hydratase (per mg microsomal protein) and GSH S-transferase (per mg cytosolic protein) were factors of 5- and 10-fold lower than the corresponding activities in rat liver. However, when expressed per gram body weight, activities of both epoxide hydratase and GSH S-transferase were 3 times higher for Drosophila enzymes. The apparent Km values for the two Drosophila enzymes were higher, whereas the apparent Km values were lower, than the values found for the rat-liver enzymes. Among 3 different Drosophila strains (a wild-type, a white eye-color carrying mutant strain and a DDT-resistant strain), preliminary experiments showed no differences as far as these two enzymic activities were concerned. It is concluded that the results obtained in genetic toxicology testing with Drosophila are probably relevant to effects to be expected in mammalian systems with compounds requiring metabolic processes involving the enzymes investigated here. 相似文献
6.
R Morgenstern J W DePierre L Ernster 《Biochemical and biophysical research communications》1979,87(3):657-663
Rat liver microsomes exhibit glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene as the second substrate. This activity can be stimulated 8-fold by treatment of the microsomes with N-ethylmaleimide and 4-fold with iodoacetamide. The corresponding glutathione S-transferase activity of the supernatant fraction is not affected by such treatment. These findings suggest that rat liver microsomes contain glutathione S-transferase distinct from those found in the cytoplasmic and that the microsomal transferase can be activated by modification of microsomal sulfhydryl group(s). 相似文献
7.
Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification in plants. However, there is extremely little information on the molecular characteristics of GSTs in gymnosperms. In a previous study, we cloned a tau class GST (PtGSTU1) from a gymnosperm (Pinus tabulaeformis) for the first time. Based on the N-terminal amino acid sequence identity to the available crystal structures of plant tau GSTs, Ser13, Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 were proposed as glutathione-binding (G-site) residues. The importance of Ser13 as a G-site residue was investigated previously. The functions of Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 are examined in this study through site-directed mutagenesis. Enzyme assays and thermal stability measurements on the purified recombinant PtGSTU1 showed that substitution at each of these sites significantly affects the enzyme's substrate specificity and affinity for GSH, and these residues are essential for maintaining the stability of PtGSTU1. The results of protein expression and refolding analyses suggest that Ile54 is involved in the protein folding process. The findings demonstrate that the aforementioned residues are critical components of active sites that contribute to the enzyme's catalytic activity and structural stability. 相似文献
8.
Irene Axarli Christiana Georgiadou Prathusha Dhavala Anastassios C. Papageorgiou Nikolaos E. Labrou 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(4):662-667
Plant glutathione transferases (GSTs) play a key role in the metabolism of various xenobiotics. In this report, the catalytic mechanism of the tau class GSTU4-4 isoenzyme from Glycine max (GmGSTU4-4) was investigated by site-directed mutagenesis and steady-state kinetic analysis. The catalytic properties of the wild-type enzyme and three mutants of strictly conserved residues (Ser13Ala, Asn48Ala and Pro49Ala) were studied in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction. The results showed that the mutations significantly affect substrate binding and specificity. The effect of Ser13Ala mutation on the catalytic efficiency of the enzyme could be explained by assuming the direct involvement of Ser13 to the reaction chemistry and the correct positioning of GSH and CDNB in the ternary catalytic complex. Asn48 and Pro49 were found to have a direct role on the structural integrity of the GSH-binding site (G-site). Moreover, mutation of Asn48 and Pro49 residues may bring about secondary effects altering the thermal stability and the catalytic activity (kcat) of the enzyme without affecting the nature of the rate-limiting step of the catalytic reaction. 相似文献
9.
Indalecio Quesada-Soriano Carmen BarónRamiro Téllez-Sanz Federico García-MarotoLuis García-Fuentes 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(9):1427-1436
The glutathione S-transferase from Plasmodium falciparum presents distinct features which are absent from mammalian GST isoenzyme counterparts. Most apparent among these are the ability to tetramerize and the presence of a flexible loop. The loop, situated between the 113–119 residues, has been reported necessary for the tetramerization process. In this article, we report that a residue outside of this loop, Asn112, is a key to the process — to the point where the single Asn112Leu mutation prevents tetramerization altogether. We propose that a structural pattern involving the interaction of the Asn112 and Lys117 residues from two neighboring subunits plays a role in keeping the tetramer structure stable. We also report that, for the tetramerization of the wild-type PfGST to occur, phosphate or pyrophosphate anions must be present. In other words, tetramerization is a phosphate- or pyrophosphate-induced process. Furthermore, the presence of magnesium reinforces this induction. We present experimental evidence for these claims as well as a preliminary calorimetric and kinetic study of the dimeric Asn112Leu PfGST mutant. We also propose a putative binding site for phosphate or pyrophosphate anions through a comparative structural analysis of PfGST and pyrophosphatases from several organisms. Our results highlight the differences between PfGST and the human isoenzymes, which make the parasite enzyme a suitable antimalarial target. 相似文献
10.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis. 相似文献
11.
Fabrini R Bocedi A Dawood KF Turella P Stella L Parker MW Pedersen JZ Federici G Antonini G Ricci G 《FEBS letters》2011,585(2):341-345
Glutathione transferase reaches 0.5–0.8 mM concentration in the cell so it works in vivo under the unusual conditions of, [S] ? [E]. As glutathione transferase lowers the pKa of glutathione (GSH) bound to the active site, it increases the cytosolic concentration of deprotonated GSH about five times and speeds its conjugation with toxic compounds that are non-typical substrates of this enzyme. This acceleration becomes more efficient in case of GSH depletion and/or cell acidification. Interestingly, the enzymatic conjugation of GSH to these toxic compounds does not require the assumption of a substrate–enzyme complex; it can be explained by a simple bimolecular collision between enzyme and substrate. Even with typical substrates, the astonishing concentration of glutathione transferase present in hepatocytes, causes an unusual “inverted” kinetics whereby the classical trends of v versus E and v versus S are reversed. 相似文献
12.
Immunological properties of ligandin(Lig) and glutathione S-transferase(GST)-A, -AA and -B were investigated for elucidating their subunit relationships. By using either anti-Lig or -AA antibody, GST-B made a clear common precipitin line with Lig or AA in double immunodiffusion and the activity was inhibited intermediately between Lig and AA, whereas Lig and AA reacted very weakly with antibodies to each other. A hybrid between Lig and AA formed by guanidine hydrochloride treatment was identified immunochemically to be GST-B. GST-A had no immunological relationship with any of other three forms. 相似文献
13.
Rinaldi R Aniya Y Svensson R Eliasson E Swedmark S Shimoji M Morgenstern R 《Chemico-biological interactions》2004,147(2):163-172
Microsomal glutathione transferase 1 (MGST1) can become activated up to 30-fold by several mechanisms in vitro (e.g. covalent modification by reactive electrophiles such as N-ethylmaleimide (NEM)). Activation has also been observed in vivo during oxidative stress. It has been noted that an NADPH generating system (g.s.) can activate MGST1 (up to 2-fold) in microsomal incubations, but the mechanism was unclear. We show here that NADPH g.s treatment impaired N-ethylmaleimide activation, indicating a shared target (identified as cysteine-49 in the latter case). Furthermore, NADPH activation was prevented by sulfhydryl compounds (glutathione and dithiothreitol). A well established candidate for activation would be oxidative stress, however we could exclude that oxidation mediated by cytochrome P450 2E1 (or flavine monooxygenase) was responsible for activation under a defined set of experimental conditions since superoxide or hydrogen peroxide alone did not activate the enzyme (in microsomes prepared by our routine procedure). Actually, the ability of MGST1 to become activated by hydrogen peroxide is critically dependent on the microsome preparation method (which influences hydrogen peroxide decomposition rate as shown here), explaining variable results in the literature. NADPH g.s. dependent activation of MGST1 could instead be explained, at least partly, by a direct effect observed also with purified enzyme (up to 1.4-fold activation). This activation was inhibited by sulfhydryl compounds and thus displays the same characteristics as that of the microsomal system. Whereas NADPH, and also ATP, activated purified MGST1, several nucleotide analogues did not, demonstrating specificity. It is thus an intriguing possibility that MGST1 function could be modulated by ligands (as well as reactive oxygen species) during oxidative stress when sulfhydryls are depleted. 相似文献
14.
C L Creedy T M Brooks B J Dean D H Hutson A S Wright 《Chemico-biological interactions》1984,50(1):39-48
The Z(cis)- and E(trans)-isomers of 1,3-dichloropropene (DCP), in confirmation of previous reports, caused dose-dependent increases in the numbers of reverse mutations in Salmonella typhimurium TA100 in the presence and absence of a 9000 X g supernatant fraction (S9) from the livers of Aroclor-treated rats. The relevance of these findings to mammals is uncertain, not least because of major differences in the metabolism of the DCPs in the microbial assay systems and in vivo. For example, (Z)-DCP is efficiently detoxified in mammals by the operation of a glutathione (GSH)-dependent S-alkyl transferase. It is possible that such detoxification could proceed only very slowly in the microbial assays because the concentrations of GSH could be severely rate-limiting even in those assays fortified by the addition of S9. The results obtained in the current study demonstrate a dramatic reduction in the microbial mutagenicity of both (Z)- and (E)-DCP when the concentration of GSH in the microbial assays was adjusted to a normal physiological concentration (5 mM). However, this protective action of GSH was at least as effective in the absence of S9 as in its presence, suggesting that it was not mediated by mammalian GSH transferase. There appears to be little or no GSH alkyl or aryl transferase in the cytosol of S. typhimurium TA100, but intracellular GSH is present at a concentration similar to that found in mammalian cells. Since the uncatalysed reaction between the DCPs and glutathione is relatively slow, the effect is not due simply to their destruction by GSH. It is possible that a physiological concentration of extracellular GSH maintains the intracellular GSH in a reduced form in which its nucleophilic thiol group competes effectively with the nucleophilic centres in the bacterial DNA for the haloalkenes. The current results highlight the efficiency of GSH-linked systems in affording protection against the genotoxic action of the DCPs. It may be presumed that their operation would exert a major limiting effect on the genotoxicity of (Z)- and (E)-DCP in mammals. 相似文献
15.
Butylated hydroxytoluene (BHT) at concentrations of 300-6000 ppm in the diet caused a dose-dependent increase in gamma-glutamyl transpeptidase (GGT) activity in normal F344 male rat liver at 18 weeks. However, the activities of glutathione S-transferases (GSTs) of rat liver cytosol were enhanced only at concentrations of 3000 or 6000 ppm BHT. Histochemically, the enhanced GGT activity was localized to hepatocytes surrounding the portal areas. Autoradiographic measurements of DNA synthesis showed that dietary BHT did not increase the level of cell proliferation and the GGT-positive hepatocytes did not exhibit different rates of DNA synthesis from those of GGT-negative cells. Feeding of the liver carcinogen N-2-fluorenylacetamide (FAA) induced foci and nodules of GGT-positive altered cells which exhibited higher rates of DNA synthesis than those of surrounding GGT-negative hepatocytes. Following iron loading, the periportal GGT-positive hepatocytes produced by BHT accumulated cellular iron, whereas the cells in FAA-induced lesions excluded iron. These results suggest that dietary BHT induces GGT activity in periportal hepatocytes without proliferation of the cells and that induction does not represent fetal expression or a preneoplastic alteration. 相似文献
16.
We propose that the proper evolving unit in enzyme evolution is not a single “fittest molecule”, but a cluster of related variants denoted a “quasi-species”. A distribution of variants provides genetic variability and thereby reduces the risk of inbreeding and evolutionary dead-ends. Different matrices of substrates or activity modulators will lead to different selection criteria and divergent evolutionary trajectories. We provide examples from our directed evolution of glutathione transferases illustrating the interplay between libraries of enzyme variants and ligand matrices in the identification of quasi-species. The ligand matrix is shown to be crucial to the outcome of the search for novel activities. In this sense the experimental system resembles the biological environment in governing the evolution of enzymes. 相似文献
17.
18.
Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase pi 下载免费PDF全文
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites. 相似文献
19.
Parker LJ Ciccone S Italiano LC Primavera A Oakley AJ Morton CJ Hancock NC Bello ML Parker MW 《Journal of molecular biology》2008,380(1):131-144
The commonly used anti-cancer drug chlorambucil is the primary treatment for patients with chronic lymphocytic leukaemia. Chlorambucil has been shown to be detoxified by human glutathione transferase Pi (GST P1-1), an enzyme that is often found over-expressed in cancer tissues. The allelic variants of GST P1-1 are associated with differing susceptibilities to leukaemia and differ markedly in their efficiency in catalysing glutathione (GSH) conjugation reactions. Here, we perform detailed kinetic studies of the allelic variants with the aid of three representative co-substrates. We show that the differing catalytic properties of the variants are highly substrate-dependent. We show also that all variants exhibit the same temperature stability in the range 10 °C to 45 °C. We have determined the crystal structures of GST P1-1 in complex with chlorambucil and its GSH conjugate for two of these allelic variants that have different residues at positions 104 and 113. Chlorambucil is found to bind in a non-productive mode to the substrate-binding site (H-site) in the absence of GSH. This result suggests that under certain stress conditions where GSH levels are low, GST P1-1 can inactivate the drug by sequestering it from the surrounding medium. However, in the presence of GSH, chlorambucil binds in the H-site in a productive mode and undergoes a conjugation reaction with GSH present in the crystal. The crystal structure of the GSH-chlorambucil complex bound to the *C variant is identical with the *A variant ruling out the hypothesis that primary structure differences between the variants cause structural changes at the active site. Finally, we show that chlorambucil is a very poor inhibitor of the enzyme in contrast to ethacrynic acid, which binds to the enzyme in a similar fashion but can act as both substrate and inhibitor. 相似文献
20.