首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An accurate scoring function is a key component for successful protein structure prediction. To address this important unsolved problem, we develop a generalized orientation and distance-dependent all-atom statistical potential. The new statistical potential, generalized orientation-dependent all-atom potential (GOAP), depends on the relative orientation of the planes associated with each heavy atom in interacting pairs. GOAP is a generalization of previous orientation-dependent potentials that consider only representative atoms or blocks of side-chain or polar atoms. GOAP is decomposed into distance- and angle-dependent contributions. The DFIRE distance-scaled finite ideal gas reference state is employed for the distance-dependent component of GOAP. GOAP was tested on 11 commonly used decoy sets containing 278 targets, and recognized 226 native structures as best from the decoys, whereas DFIRE recognized 127 targets. The major improvement comes from decoy sets that have homology-modeled structures that are close to native (all within ∼4.0 Å) or from the ROSETTA ab initio decoy set. For these two kinds of decoys, orientation-independent DFIRE or only side-chain orientation-dependent RWplus performed poorly. Although the OPUS-PSP block-based orientation-dependent, side-chain atom contact potential performs much better (recognizing 196 targets) than DFIRE, RWplus, and dDFIRE, it is still ∼15% worse than GOAP. Thus, GOAP is a promising advance in knowledge-based, all-atom statistical potentials. GOAP is available for download at http://cssb.biology.gatech.edu/GOAP.  相似文献   

2.
In this paper, an improved Cα-SC energy potential designed for protein fold recognition was reported. It consists of three extremely simple interaction terms which are supposed to be the dominant interactions in protein folding: residue-residue contact, hydrophobicity and pseudodihedral potentials. The potential function only contains 210 contacts, one hydrophobic and one torsion parameters, which have been optimized using an interior point algorithm of linear programming. Tests of the derived potential function on commonly used decoy sets illustrate that it outperforms most of the existing coarse-grained potentials in terms of its capabilities in recognizing native structures and consistency in achieving high Z-scores across decoy sets, and it has almost equivalent performance to the potentials which considered complex intra-molecular interactions. The results show that our scoring function is a generally prospective potential for protein structure prediction and modeling with regard to its recognition and computation efficacy.  相似文献   

3.
Hsieh MJ  Luo R 《Proteins》2004,56(3):475-486
A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.  相似文献   

4.
pi-pi, Cation-pi, and hydrophobic packing interactions contribute specificity to protein folding and stability to the native state. As a step towards developing improved models of these interactions in proteins, we compare the side-chain packing arrangements in native proteins to those found in compact decoys produced by the Rosetta de novo structure prediction method. We find enrichments in the native distributions for T-shaped and parallel offset arrangements of aromatic residue pairs, in parallel stacked arrangements of cation-aromatic pairs, in parallel stacked pairs involving proline residues, and in parallel offset arrangements for aliphatic residue pairs. We then investigate the extent to which the distinctive features of native packing can be explained using Lennard-Jones and electrostatics models. Finally, we derive orientation-dependent pi-pi, cation-pi and hydrophobic interaction potentials based on the differences between the native and compact decoy distributions and investigate their efficacy for high-resolution protein structure prediction. Surprisingly, the orientation-dependent potential derived from the packing arrangements of aliphatic side-chain pairs distinguishes the native structure from compact decoys better than the orientation-dependent potentials describing pi-pi and cation-pi interactions.  相似文献   

5.
Statistical potential for assessment and prediction of protein structures   总被引:2,自引:0,他引:2  
Protein structures in the Protein Data Bank provide a wealth of data about the interactions that determine the native states of proteins. Using the probability theory, we derive an atomic distance-dependent statistical potential from a sample of native structures that does not depend on any adjustable parameters (Discrete Optimized Protein Energy, or DOPE). DOPE is based on an improved reference state that corresponds to noninteracting atoms in a homogeneous sphere with the radius dependent on a sample native structure; it thus accounts for the finite and spherical shape of the native structures. The DOPE potential was extracted from a nonredundant set of 1472 crystallographic structures. We tested DOPE and five other scoring functions by the detection of the native state among six multiple target decoy sets, the correlation between the score and model error, and the identification of the most accurate non-native structure in the decoy set. For all decoy sets, DOPE is the best performing function in terms of all criteria, except for a tie in one criterion for one decoy set. To facilitate its use in various applications, such as model assessment, loop modeling, and fitting into cryo-electron microscopy mass density maps combined with comparative protein structure modeling, DOPE was incorporated into the modeling package MODELLER-8.  相似文献   

6.
In this paper, we report a knowledge-based potential function, named the OPUS-Ca potential, that requires only Calpha positions as input. The contributions from other atomic positions were established from pseudo-positions artificially built from a Calpha trace for auxiliary purposes. The potential function is formed based on seven major representative molecular interactions in proteins: distance-dependent pairwise energy with orientational preference, hydrogen bonding energy, short-range energy, packing energy, tri-peptide packing energy, three-body energy, and solvation energy. From the testing of decoy recognition on a number of commonly used decoy sets, it is shown that the new potential function outperforms all known Calpha-based potentials and most other coarse-grained ones that require more information than Calpha positions. We hope that this potential function adds a new tool for protein structural modeling.  相似文献   

7.
8.
Structure prediction on a genomic scale requires a simplified energy function that can efficiently sample the conformational space of polypeptide chains. A good energy function at minimum should discriminate native structures against decoys. Here, we show that a recently developed, residue-specific, all-atom knowledge-based potential (167 atomic types) based on distance-scaled, finite ideal-gas reference state (DFIRE-all-atom) can be substantially simplified to 20 residue types located at side-chain center of mass (DFIRE-SCM) without a significant change in its capability of structure discrimination. Using 96 standard multiple decoy sets, we show that there is only a small reduction (from 80% to 78%) in success rate of ranking native structures as the top 1. The success rate is higher than two previously developed, all-atom distance-dependent statistical pair potentials. Applied to structure selections of 21 docking decoys without modification, the DFIRE-SCM potential is 29% more successful in recognizing native complex structures than an all-atom statistical potential trained by a database of dimeric interfaces. The potential also achieves 92% accuracy in distinguishing true dimeric interfaces from artificial crystal interfaces. In addition, the DFIRE potential with the C(alpha) positions as the interaction centers recognizes 123 native structures out of a comprehensive 125-protein TOUCHSTONE decoy set in which each protein has 24,000 decoys with only C(alpha) positions. Furthermore, the performance by DFIRE-SCM on newly established 25 monomeric and 31 docking Rosetta-decoy sets is comparable to (or better than in the case of monomeric decoy sets) that of a recently developed, all-atom Rosetta energy function enhanced with an orientation-dependent hydrogen bonding potential.  相似文献   

9.
QMEAN: A comprehensive scoring function for model quality assessment   总被引:3,自引:0,他引:3  
  相似文献   

10.
We have developed a solvation function that combines a Generalized Born model for polarization of protein charge by the high dielectric solvent, with a hydrophobic potential of mean force (HPMF) as a model for hydrophobic interaction, to aid in the discrimination of native structures from other misfolded states in protein structure prediction. We find that our energy function outperforms other reported scoring functions in terms of correct native ranking for 91% of proteins and low Z scores for a variety of decoy sets, including the challenging Rosetta decoys. This work shows that the stabilizing effect of hydrophobic exposure to aqueous solvent that defines the HPMF hydration physics is an apparent improvement over solvent-accessible surface area models that penalize hydrophobic exposure. Decoys generated by thermal sampling around the native-state basin reveal a potentially important role for side-chain entropy in the future development of even more accurate free energy surfaces.  相似文献   

11.
A distance-dependent atom-pair potential that treats long range and local interactions separately has been developed and optimized to distinguish native protein structures from sets of incorrect or decoy structures. Atoms are divided into 30 types based on chemical properties and relative position in the amino acid side-chains. Several parameters affecting the calculation and evaluation of this statistical potential, such as the reference state, the bin width, cutoff distances between pairs, and the number of residues separating the atom pairs, are adjusted to achieve the best discrimination. The native structure has the lowest energy for 39 of the 40 sets of original ROSETTA decoys (1000 structures per set) and 23 of the 25 improved decoys (approximately 1900 structures per set). Combined with the orientation-dependent backbone hydrogen bonding potential used by ROSETTA and a statistical solvation potential based on the solvent exclusion model of Lazaridis & Karplus, this potential is used as a scoring function for conformational search based on a genetic algorithm method. After unfolding the native structure by changing every phi and psi angle by either +/-3, +/-5 or +/-7 degrees, five small proteins can be efficiently refolded, in some cases to within 0.5 A C(alpha) distance matrix error (DME) to the native state. Although no significant correlation is found between the total energy and structural similarity to the native state, a surprisingly strong correlation exists between the radius of gyration and the DME for low energy structures.  相似文献   

12.
The DOcking decoy‐based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance‐dependent atom‐pair interactions. To optimize the atom‐pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand–receptor systems (or just pairs). Thus, a total of 8609 ligand–receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand–receptor systems, 1000 evenly sampled docking decoys with 0–10 Å interface root‐mean‐square‐deviation (iRMSD) were generated with a method used before for protein–protein docking. A neural network‐based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel‐like energy landscape for the interaction between these hypothetical ligand–receptor systems. Thus, our method hierarchically models the overall funnel‐like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom‐pair‐based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation‐dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand–receptor systems and their decoys are freely available at http://agknapp.chemie.fu‐berlin.de/doop/ . Proteins 2015; 83:881–890. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
H Lu  J Skolnick 《Proteins》2001,44(3):223-232
A heavy atom distance-dependent knowledge-based pairwise potential has been developed. This statistical potential is first evaluated and optimized with the native structure z-scores from gapless threading. The potential is then used to recognize the native and near-native structures from both published decoy test sets, as well as decoys obtained from our group's protein structure prediction program. In the gapless threading test, there is an average z-score improvement of 4 units in the optimized atomic potential over the residue-based quasichemical potential. Examination of the z-scores for individual pairwise distance shells indicates that the specificity for the native protein structure is greatest at pairwise distances of 3.5-6.5 A, i.e., in the first solvation shell. On applying the current atomic potential to test sets obtained from the web, composed of native protein and decoy structures, the current generation of the potential performs better than residue-based potentials as well as the other published atomic potentials in the task of selecting native and near-native structures. This newly developed potential is also applied to structures of varying quality generated by our group's protein structure prediction program. The current atomic potential tends to pick lower RMSD structures than do residue-based contact potentials. In particular, this atomic pairwise interaction potential has better selectivity especially for near-native structures. As such, it can be used to select near-native folds generated by structure prediction algorithms as well as for protein structure refinement.  相似文献   

14.
Protein structure prediction remains an unsolved problem. Since prediction of the native structure seems very difficult, one usually tries to predict the correct fold of a protein. Here the "fold" is defined by the approximate backbone structure of the protein. However, physicochemical factors that determine the correct fold are not well understood. It has recently been reported that molecular mechanics energy functions combined with effective solvent terms can discriminate the native structures from misfolded ones. Using such a physicochemical energy function, we studied the factors necessary for discrimination of correct and incorrect folds. We first selected correct and incorrect folds by a conventional threading method. Then, all-atom models of those folds were constructed by simply minimizing the atomic overlaps. The constructed correct model representing the native fold has almost the same backbone structure as the native structure but differs in side-chain packing. Finally, the energy values of the constructed models were compared with that of the experimentally determined native structure. The correct model as well as the native structure showed lower energy than misfolded models. However, a large energy gap was found between the native structure and the correct model. By decomposing the energy values into their components, it was found that solvent effects such as the hydrophobic interaction or solvent shielding and the Born energy stabilized the correct model rather than the native structure. The large energetic stabilization of the native structure was attained by specific side-chain packing. The stabilization by solvent effects is small compared to that by side-chain packing. Therefore, it is suggested that in order to confidently predict the correct fold of a protein, it is also necessary to predict correct side-chain packing.  相似文献   

15.
The conformations of loops are determined by the water-mediated interactions between amino acid residues. Energy functions that describe the interactions can be derived either from physical principles (physical-based energy function) or statistical analysis of known protein structures (knowledge-based statistical potentials). It is commonly believed that statistical potentials are appropriate for coarse-grained representation of proteins but are not as accurate as physical-based potentials when atomic resolution is required. Several recent applications of physical-based energy functions to loop selections appear to support this view. In this article, we apply a recently developed DFIRE-based statistical potential to three different loop decoy sets (RAPPER, Jacobson, and Forrest-Woolf sets). Together with a rotamer library for side-chain optimization, the performance of DFIRE-based potential in the RAPPER decoy set (385 loop targets) is comparable to that of AMBER/GBSA for short loops (two to eight residues). The DFIRE is more accurate for longer loops (9 to 12 residues). Similar trend is observed when comparing DFIRE with another physical-based OPLS/SGB-NP energy function in the large Jacobson decoy set (788 loop targets). In the Forrest-Woolf decoy set for the loops of membrane proteins, the DFIRE potential performs substantially better than the combination of the CHARMM force field with several solvation models. The results suggest that a single-term DFIRE-statistical energy function can provide an accurate loop prediction at a fraction of computing cost required for more complicate physical-based energy functions. A Web server for academic users is established for loop selection at the softwares/services section of the Web site http://theory.med.buffalo.edu/.  相似文献   

16.
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein ‘structure prediction’ problem.  相似文献   

17.
This study is aimed at showing that considering only nonlocal interactions (interactions of two atoms with a sequence separation larger than five amino acids) extracted using Delaunay tessellation is sufficient and accurate for protein fold recognition. An atomic knowledge‐based potential was extracted based on a Delaunay tessellation with 167 atom types from a sample of the native structures and the normalized energy was calculated for only nonlocal interactions in each structure. The performance of this method was tested on several decoy sets and compared to a method considering all interactions extracted by Delaunay tessellation and three other popular scoring functions. Features such as the contents of different types of interactions and atoms with the highest number of interactions were also studied. The results suggest that considering only nonlocal interactions in a Delaunay tessellation of protein structure is a discrete structure catching deep properties of the three‐dimensional protein data. Proteins 2014; 82:415–423. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
We propose a novel method of calculation of free energy for coarse grained models of proteins by combining our newly developed multibody potentials with entropies computed from elastic network models of proteins. Multi-body potentials have been of much interest recently because they take into account three dimensional interactions related to residue packing and capture the cooperativity of these interactions in protein structures. Combining four-body non-sequential, four-body sequential and pairwise short range potentials with optimized weights for each term, our coarse-grained potential improved recognition of native structure among misfolded decoys, outperforming all other contact potentials for CASP8 decoy sets and performance comparable to the fully atomic empirical DFIRE potentials. By combing statistical contact potentials with entropies from elastic network models of the same structures we can compute free energy changes and improve coarse-grained modeling of protein structure and dynamics. The consideration of protein flexibility and dynamics should improve protein structure prediction and refinement of computational models. This work is the first to combine coarse-grained multibody potentials with an entropic model that takes into account contributions of the entire structure, investigating native-like decoy selection.  相似文献   

19.
We have calculated the stability of decoy structures of several proteins (from the CASP3 models and the Park and Levitt decoy set) relative to the native structures. The calculations were performed with the force field-consistent ES/IS method, in which an implicit solvent (IS) model is used to calculate the average solvation free energy for snapshots from explicit simulations (ESs). The conformational free energy is obtained by adding the internal energy of the solute from the ESs and an entropic term estimated from the covariance positional fluctuation matrix. The set of atomic Born radii and the cavity-surface free energy coefficient used in the implicit model has been optimized to be consistent with the all-atom force field used in the ESs (cedar/gromos with simple point charge (SPC) water model). The decoys are found to have a consistently higher free energy than that of the native structure; the gap between the native structure and the best decoy varies between 10 and 15 kcal/mole, on the order of the free energy difference that typically separates the native state of a protein from the unfolded state. The correlation between the free energy and the extent to which the decoy structures differ from the native (as root mean square deviation) is very weak; hence, the free energy is not an accurate measure for ranking the structurally most native-like structures from among a set of models. Analysis of the energy components shows that stability is attained as a result of three major driving forces: (1) minimum size of the protein-water surface interface; (2) minimum total electrostatic energy, which includes solvent polarization; and (3) minimum protein packing energy. The detailed fit required to optimize the last term may underlie difficulties encountered in recovering the native fold from an approximate decoy or model structure.  相似文献   

20.
An essential requirement for theoretical protein structure prediction is an energy function that can discriminate the native from non-native protein conformations. To date most of the energy functions used for this purpose have been extracted from a statistical analysis of the protein structure database, without explicit reference to the physical interactions responsible for protein stability. The use of the statistical functions has been supported by the widespread belief that they are superior for such discrimination to physics-based energy functions. An effective energy function which combined the CHARMM vacuum potential with a Gaussian model for the solvation free energy is tested for its ability to discriminate the native structure of a protein from misfolded conformations; the results are compared with those obtained with the vacuum CHARMM potential. The test is performed on several sets of misfolded structures prepared by others, including sets of about 650 good decoys for six proteins, as well as on misfolded structures of chymotrypsin inhibitor 2. The vacuum CHARMM potential is successful in most cases when energy minimized conformations are considered, but fails when applied to structures relaxed by molecular dynamics. With the effective energy function the native state is always more stable than grossly misfolded conformations both in energy minimized and molecular dynamics-relaxed structures. The present results suggest that molecular mechanics (physics-based) energy functions, complemented by a simple model for the solvation free energy, should be tested for use in the inverse folding problem, and supports their use in studies of the effective energy surface of proteins in solution. Moreover, the study suggests that the belief in the superiority of statistical functions for these purposes may be ill founded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号