首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
2.
3.
The reason for the existence of complex sensor kinases is little understood but thought to lie in the capacity to respond to multiple signals. The complex, seven‐domain sensor kinase TodS controls in concert with the TodT response regulator the expression of the toluene dioxygenase pathway in Pseudomonas putida F1 and DOT‐T1E. We have previously shown that some aromatic hydrocarbons stimulate TodS activity whereas others behave as antagonists. We show here that TodS responds in addition to the oxidative agent menadione. Menadione but no other oxidative agent tested inhibited TodS activity in vitro and reduced PtodX expression in vivo. The menadione signal is incorporated by a cysteine‐dependent mechanism. The mutation of the sole conserved cysteine of TodS (C320) rendered the protein insensitive to menadione. We evaluated the mutual opposing effects of toluene and menadione on TodS autophosphorylation. In the presence of toluene, menadione reduced TodS activity whereas toluene did not stimulate activity in the presence of menadione. It was shown by others that menadione increases expression of glucose metabolism genes. The opposing effects of menadione on glucose and toluene metabolism may be partially responsible for the interwoven regulation of both catabolic pathways. This work provides mechanistic detail on how complex sensor kinases integrate different types of signal molecules.  相似文献   

4.
The two‐component system TmoS/TmoT controls the expression of the toluene‐4‐monooxygenase pathway in Pseudomonas mendocina RK1 via modulation of PtmoX activity. The TmoS/TmoT system belongs to the family of TodS/TodT like proteins. The sensor kinase TmoS is a 108 kDa protein composed of seven different domains. Using isothermal titration calorimetry we show that purified TmoS binds a wide range of aromatic compounds with high affinities. Tightest ligand binding was observed for toluene (KD = 150 nM), which corresponds to the highest affinity measured between an effector and a sensor kinase. Other compounds with affinities in the nanomolar range include benzene, the 3 xylene isomers, styrene, nitrobenzene or p‐chlorotoluene. We demonstrate that only part of the ligands that bind to TmoS increase protein autophosphorylation in vitro and consequently pathway expression in vivo. These compounds are referred to as agonists. Other TmoS ligands, termed antagonists, failed to increase TmoS autophosphorylation, which resulted in their incapacity to stimulate gene expression in vivo. We also show that TmoS saturated with different agonists differs in their autokinase activities. The effector screening of gene expression showed that promoter activity of PtmoX and PtodX (controlled by the TodS/TodT system) is mediated by the same set of 22 compounds. The common structural feature of these compounds is the presence of a single aromatic ring. Among these ligands, toluene was the most potent inducer of both promoter activities. Information on the TmoS/TmoT and TodS/TodT system combined with a sequence analysis of family members permits to identify distinct features that define this protein family.  相似文献   

5.
Aniline and chlorinated anilines (CAs) are classified as priority pollutants; therefore, an effective method for detection and monitoring is required. In this study, a green-fluorescence protein-based bioreporter for the detection of aniline and CAs was constructed in Escherichia coli DH5α, characterized and tested with soil and wastewater. The sensing capability relied on the regulatory control between a two-component regulatory protein, TodS/TodT, and the P todX promoter of Pseudomonas putida T-57 (PpT57), since the gene expression of todS, todT, and todC2 are positively induced with 4-chloroaniline. The bioreporter system (DH5α/pPXGFP–pTODST) is markedly unique with the two co-existing plasmids. The inducibility of the fluorescence response was culture-medium- and time-dependent. Cells grown in M9G medium exhibited a low background fluorescence level and were readily induced by 4CA after 3-h exposure, reaching the maximum induction level at 9?h. When tested with benzene, toluene, ethyl-benzene and xylene, aniline and CAs, the response data were best fit by a sigmoidal dose–response relationship, from which the K 1/2 value was determined for the positive effectors. 3CA and 4CA were relatively powerful inducers, while some poly-chlorinated anilines could also induce green fluorescence protein expression. The results indicated a broader recognition range of PpT57’sTodST than previously reported for P. putida. The test results with environmental samples were reliable, indicating the potential application of this bioreporter in the ecotoxicology assessment and bioremediation of areas contaminated with aniline- and/or CAs.  相似文献   

6.
7.
The bindings of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane·4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane·5HCl (BE-3333) with β-lactoglobulin (β-LG) were determined in aqueous solution. FTIR, UV-vis, CD and fluorescence spectroscopic methods as well as molecular modeling were used to determine the polyamine binding sites and the effect of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind β-LG via both hydrophilic and hydrophobic contacts. Stronger polyamine-protein complexes formed with synthetic polyamines than biogenic polyamines, with overall binding constants of Kspm-β-LG = 3.2(±0.6) × 104 M−1, Kspmd-β-LG = 1.8(±0.5) × 104 M−1, KBE-333-β-LG = 5.8(±0.3) × 104 M−1 and KBE-3333-β-LG = 6.2(±0.05) × 104 M−1. Molecular modeling showed the participation of several amino acids in the polyamine complexes with the following order of polyamine-protein binding affinity: BE-3333 > BE-333 > spermine > spermidine, which correlates with their positively charged amino group content. Alteration of protein conformation was observed with a reduction of β-sheet from 57% (free protein) to 55-51%, and a major increase of turn structure from 13% (free protein) to ∼21% in the polyamine-β-LG complexes, indicating a partial protein unfolding.  相似文献   

8.
Human serum albumin (HSA) is a monomeric allosteric protein. Here, the effect of ibuprofen on denitrosylation kinetics (koff) and spectroscopic properties of HSA-heme-Fe(II)-NO is reported. The koff value increases from (1.4 ± 0.2) × 10−4 s−1, in the absence of the drug, to (9.5 ± 1.2) × 10−3 s−1, in the presence of 1.0 × 10−2 M ibuprofen, at pH 7.0 and 10.0 °C. From the dependence of koff on the drug concentration, values of the dissociation equilibrium constants for ibuprofen binding to HSA-heme-Fe(II)-NO (K1 = (3.1 ± 0.4) × 10−7 M, K2 = (1.7 ± 0.2) × 10−4 M, and K3 = (2.2 ± 0.2) × 10−3 M) were determined. The K3 value corresponds to the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(II)-NO determined by monitoring drug-dependent absorbance spectroscopic changes (H = (2.6 ± 0.3) × 10−3 M). Present data indicate that ibuprofen binds to the FA3-FA4 cleft (Sudlow’s site II), to the FA6 site, and possibly to the FA2 pocket, inducing the hexa-coordination of HSA-heme-Fe(II)-NO and triggering the heme-ligand dissociation kinetics.  相似文献   

9.
Sulfonylurea drugs are often prescribed as a treatment for type II diabetes to help lower blood sugar levels by stimulating insulin secretion. These drugs are believed to primarily bind in blood to human serum albumin (HSA). This study used high-performance affinity chromatography (HPAC) to examine the binding of sulfonylureas to HSA. Frontal analysis with an immobilized HSA column was used to determine the association equilibrium constants (Ka) and number of binding sites on HSA for the sulfonylurea drugs acetohexamide and tolbutamide. The results from frontal analysis indicated HSA had a group of relatively high-affinity binding regions and weaker binding sites for each drug, with average Ka values of 1.3 (±0.2) × 105 and 3.5 (±3.0) × 102 M−1 for acetohexamide and values of 8.7 (±0.6) × 104 and 8.1 (±1.7) × 103 M−1 for tolbutamide. Zonal elution and competition studies with site-specific probes were used to further examine the relatively high-affinity interactions of these drugs by looking directly at the interactions that were occurring at Sudlow sites I and II of HSA (i.e., the major drug-binding sites on this protein). It was found that acetohexamide was able to bind at both Sudlow sites I and II, with Ka values of 1.3 (±0.1) × 105 and 4.3 (±0.3) × 104 M−1, respectively, at 37 °C. Tolbutamide also appeared to interact with both Sudlow sites I and II, with Ka values of 5.5 (±0.2) × 104 and 5.3 (±0.2) × 104 M−1, respectively. The results provide a more quantitative picture of how these drugs bind with HSA and illustrate how HPAC and related tools can be used to examine relatively complex drug–protein interactions.  相似文献   

10.
Benzene, toluene, ethylbenzene and xylenes (BTEX) contamination is a serious threat to public health and the environment, and therefore, there is an urgent need to detect its presence in nature. The use of whole‐cell reporters is an efficient, easy‐to‐use and low‐cost approach to detect and follow contaminants outside specialized laboratories; this is especially important in oil spills that are frequent in marine environments. The aim of this study is the construction of a bioreporter system and its comparison and validation for the specific detection of monocyclic aromatic hydrocarbons in different host bacteria and environmental samples. Our bioreporter system is based on the two component regulatory system TodS–TodT of P. putida DOT‐T1E, and the PtodX promoter fused to the GFP protein as the reporter protein. For the construction of different biosensors, this bioreporter was transferred into three different bacterial strains isolated from three different environments, and their performance was measured. Validation of the biosensors on water samples spiked with petrol, diesel and crude oil on contaminated waters from oil spills and on contaminated soils demonstrated that they can be used in mapping and monitoring some BTEX compounds (specifically benzene, toluene and two xylene isomers). Validation of biosensors is an important issue for the integration of these devices into pollution‐control programmes.  相似文献   

11.
Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with β-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the β-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K1 = 21 ± 6 × 103 M− 1) than the second (K2 = 4 ± 2 × 103 M− 1). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K1 = 20 ± 10 × 103 M− 1 and K2 = 1.67 ± 0.07 × 103 M− 1. Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the β-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general.  相似文献   

12.
Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., koff) is reported. In the absence of drugs, the value of koff is (1.3 ± 0.2) × 10−4 s−1. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the koff value increases to (8.6 ± 0.9) × 10−4 s−1. From the dependence of koff on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 ± 0.2) × 10−3 M and (6.2 ± 0.7) × 10−5 M, respectively) were determined. The increase of koff values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow’s site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.  相似文献   

13.
Rho termination factor is an essential hexameric helicase responsible for terminating 20-50% of all mRNA synthesis in Escherichia coli. We used single-molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho utilization site of the λtR1 terminator. Our results are consistent with Rho complexes adopting two states: one that binds 57 ± 2 nt of RNA across all six of the Rho primary binding sites, and another that binds 85 ± 2 nt at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′ → 3′ toward RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the Rho utilization site and RNAP. These findings lead to a general model for Rho binding and translocation and establish a novel experimental approach that should facilitate additional single-molecule studies of RNA-binding proteins.  相似文献   

14.
15.
16.
The interaction of (−)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (−)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca2+ influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50 = 3.86 ± 0.49 and 1.92 ± 0.48 μM, respectively, (b) binds to the [3H]TCP site with ∼13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [3H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6′ and 13′ in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9′ is the minimum structural component for (−)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (−)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants.  相似文献   

17.
18.
19.
A case study on Centaurea gymnocarpa Moris & De Not., a narrow endemic species, was carried out by analyzing its morphological, anatomical, and physiological traits in response to natural habitat stress factors under Mediterranean climate conditions. The results underline that the species is particularly adapted to the environment where it naturally grows. At the plant level, the above-ground/below-ground dry mass (1.73 ± 0.60) shows its investment predominately in the above-ground structure with a resulting total leaf area per plant of 1399 ± 94 cm2. The senescent attached leaves at the base of the plant contribute to limit leaf transpiration by shading soil around the plant. Moreover, the dense C. gymnocarpa leaf pubescence, leaf rolling, the relatively high leaf mass area (LMA = 12.3 ± 1.3 mg cm−2) and leaf tissue density (LTD = 427 ± 44 mg cm−3) contribute to limit leaf transpiration, also postponing leaf death under dry conditions. At the physiological level, a relatively low respiration/photosynthesis ratio (R/PN) in spring results from high R [2.26 ± 0.59 μmol (CO2) m−2 s−1] and PN [12.3 ± 1.5 μmol (CO2) m−2 s−1]. The high photosynthetic nitrogen use efficiency [PNUE = 15.5 ± 0.4 μmol (CO2) g−1 (N) s−1] shows the large amount of nitrogen (N) invested in the photosynthetic machinery of new leaves, associated to a high chlorophyll content (Chl = 35 ± 5 SPAD units). On the contrary, the highest R/PN ratio (1.75 ± 0.19) in summer is due to a significant PN decrease and increase of R in response to drought. The low PNUE [1.5 ± 0.2 μmol (CO2) g−1 (N) s−1] in this season is indicative of a greater N investment in leaf cell walls which may contribute to limit transpiration. On the contrary, the low R/PN ratio (0.05 ± 0.02) in winter is resulting from the limited enzyme activity of the respiratory apparatus [R = 0.23 ± 0.08 μmol (CO2) m−2 s−1] while the low PNUE [3.5 ± 0.2 μmol (CO2) g−1 (N) s−1] suggests that low temperatures additionally limit plant production. The experiment of the imposed water stress confirms that the C. gymnocarpa growth capability is in conformity with the severe conditions of its natural habitat, likewise as it may be the case with others narrow endemic species that have occupied niches with similar extreme conditions.  相似文献   

20.
Escherichiacoli RecBCD is a bipolar DNA helicase possessing two motor subunits (RecB, a 3′-to-5′ translocase, and RecD, a 5′-to-3′ translocase) that is involved in the major pathway of recombinational repair. Previous studies indicated that the minimal kinetic mechanism needed to describe the ATP-dependent unwinding of blunt-ended DNA by RecBCD in vitro is a sequential n-step mechanism with two to three additional kinetic steps prior to initiating DNA unwinding. Since RecBCD can “melt out” ∼ 6 bp upon binding to the end of a blunt-ended DNA duplex in a Mg2+-dependent but ATP-independent reaction, we investigated the effects of noncomplementary single-stranded (ss) DNA tails [3′-(dT)6 and 5′-(dT)6 or 5′-(dT)10] on the mechanism of RecBCD and RecBC unwinding of duplex DNA using rapid kinetic methods. As with blunt-ended DNA, RecBCD unwinding of DNA possessing 3′-(dT)6 and 5′-(dT)6 noncomplementary ssDNA tails is well described by a sequential n-step mechanism with the same unwinding rate (mkU = 774 ± 16 bp s− 1) and kinetic step size (m = 3.3 ± 1.3 bp), yet two to three additional kinetic steps are still required prior to initiation of DNA unwinding (kC = 45 ± 2 s− 1). However, when the noncomplementary 5′ ssDNA tail is extended to 10 nt [5′-(dT)10 and 3′-(dT)6], the DNA end structure for which RecBCD displays optimal binding affinity, the additional kinetic steps are no longer needed, although a slightly slower unwinding rate (mkU = 538 ± 24 bp s− 1) is observed with a similar kinetic step size (m = 3.9 ± 0.5 bp). The RecBC DNA helicase (without the RecD subunit) does not initiate unwinding efficiently from a blunt DNA end. However, RecBC does initiate well from a DNA end possessing noncomplementary twin 5′-(dT)6 and 3′-(dT)6 tails, and unwinding can be described by a simple uniform n-step sequential scheme, without the need for the additional kC initiation steps, with a similar kinetic step size (m = 4.4 ± 1.7 bp) and unwinding rate (mkobs = 396 ± 15 bp s− 1). These results suggest that the additional kinetic steps with rate constant kC required for RecBCD to initiate unwinding of blunt-ended and twin (dT)6-tailed DNA reflect processes needed to engage the RecD motor with the 5′ ssDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号