首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LexA蛋白首先在大肠杆菌(Escherichia coli)中作为SOS反应的重要调节因子之一被发现. LexA蛋白含有202个氨基酸,由N端DNA结合结构域和C端催化核心结构域构成. 细胞中LexA蛋白大都以二聚体形式存在,并且有可切割和不可切割两种构象. 在正常生理条件下,LexA特异性结合16 bp的保守序列5′-CTGTN8ACAG-3′,即SOS盒,抑制约50个基因的表达. 当发生DNA损伤时,活化的RecA蛋白通过稳定LexA蛋白可切割构象,促进LexA蛋白Ala84-Gly85间肽键的切割,产生的C端LexA85 202和N端LexA1 84被蛋白酶ClpXP和Lon快速降解. LexA蛋白切割后,SOS基因以一定的顺序开始表达,并且完成DNA损伤修复. 本文回顾和总结了LexA蛋白分子结构,自我切割分子机制和影响因素,以及在SOS反应中的作用等方面的研究进展. 同时,也讨论了LexA蛋白在原核细胞中的进化保守性.  相似文献   

2.
The LexA protein of the nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 exhibits a RecA-independent and alkaline pH-dependent autoproteolytic cleavage. The autoproteolytic cleavage of Anabaena LexA occurs at pH 8.5 and above, stimulated by the addition of Ca2+ and in the temperature range of 30–57 °C. Mutational analysis of Anabaena LexA protein indicated that the cleavage occurred at the peptide bond between Ala-84 and Gly-85, and optimal cleavage required the presence of Ser-118 and Lys-159, as also observed for LexA protein of Escherichia coli. Cleavage of Anabaena LexA was affected upon deletion of three amino acids, 86GLI. These three amino acids are unique to all cyanobacterial LexA proteins predicted to be cleavable. The absence of RecA-dependent cleavage at physiological pH, which has not been reported for other bacterial LexA proteins, is possibly due to the absence of RecA interacting sites on Anabaena LexA protein, corresponding to the residues identified in E. coli LexA, and low cellular levels of RecA in Anabaena. Exposure to SOS-response inducing stresses, such as UV-B and mitomycin C neither affected the expression of LexA in Anabaena nor induced cleavage of LexA in either Anabaena 7120 or E. coli overexpressing Anabaena LexA protein. Though the LexA may be acting as a repressor by binding to the LexA box in the vicinity of the promoter region of specific gene, their derepression may not be via proteolytic cleavage during SOS-inducing stresses, unless the stress induces increase in cytoplasmic pH. This could account for the regulation of several carbon metabolism genes rather than DNA-repair genes under the regulation of LexA in cyanobacteria especially during high light induced oxidative stress.  相似文献   

3.
RecA protein plays a principal role in bacterial SOS response to DNA damage. The induction of the SOS response is well understood and involves the cleavage of the LexA repressor catalyzed by the RecA nucleoprotein filament. In contrast, our understanding of the regulation and termination of the SOS response is much more limited. RecX and DinI are two major regulators of RecA's ability to promote LexA cleavage and strand exchange reaction, and are believed to modulate its activity in ongoing SOS events. DinI's function in the SOS response remains controversial, since its interaction with the RecA filament is concentration dependent and may result in either stabilization or depolymerization of the filament. The 17 C-terminal residues of RecA modulate the interaction between DinI and RecA. We demonstrate that DinI binds to the active RecA filament in two distinct structural modes. In the first mode, DinI binds to the C-terminus of a RecA protomer. In the second mode, DinI resides deeply in the groove of the RecA filament, with its negatively charged C-terminal helix proximal to the L2 loop of RecA. The deletion of the 17 C-terminal residues of RecA favors the second mode of binding. We suggest that the negatively charged C-terminus of RecA prevents DinI from entering the groove and protects the RecA filament from depolymerization. Polymorphic binding of DinI to RecA filaments implies an even more complex role of DinI in the bacterial SOS response.  相似文献   

4.
An early event in the induction of the SOS system of Escherichia coli is RecA-mediated cleavage of the LexA repressor. RecA acts indirectly as a coprotease to stimulate repressor self-cleavage, presumably by forming a complex with LexA. How complex formation leads to cleavage is not known. As an approach to this question, it would be desirable to identify the protein-protein interaction sites on each protein. It was previously proposed that LexA and other cleavable substrates, such as phage lambda CI repressor and E. coli UmuD, bind to a cleft located between two RecA monomers in the crystal structure. To test this model, and to map the interface between RecA and its substrates, we carried out alanine-scanning mutagenesis of RecA. Twenty double mutations were made, and cells carrying them were characterized for RecA-dependent repair functions and for coprotease activity towards LexA, lambda CI, and UmuD. One mutation in the cleft region had partial defects in cleavage of CI and (as expected from previous data) of UmuD. Two mutations in the cleft region conferred constitutive cleavage towards CI but not towards LexA or UmuD. By contrast, no mutations in the cleft region or elsewhere in RecA were found to specifically impair the cleavage of LexA. Our data are consistent with binding of CI and UmuD to the cleft between two RecA monomers but do not provide support for the model in which LexA binds in this cleft.  相似文献   

5.
The SOS response to DNA damage in Escherichia coli involves at least 43 genes, all under the control of the LexA repressor. Activation of these genes occurs when the LexA repressor cleaves itself, a reaction catalyzed by an active, extended RecA filament formed on DNA. It has been shown that the LexA repressor binds within the deep groove of this nucleoprotein filament, and presumably, cleavage occurs in this groove. Bacteriophages, such as λ, have repressors (cI) that are structural homologs of LexA and also undergo self-cleavage when SOS is induced. It has been puzzling that some mutations in RecA that affect the cleavage of repressors are in the C-terminal domain (CTD) far from the groove where cleavage is thought to occur. In addition, it has been shown that the rate of cleavage of cI by RecA is dependent upon both the substrate on which RecA is polymerized and the ATP analog used. Electron microscopy and three-dimensional reconstructions show that the conformation and dynamics of RecA's CTD are also modulated by the polynucleotide substrate and ATP analog. Under conditions where the repressor cleavage rates are the highest, cI is coordinated within the groove by contacts with RecA's CTD. These observations provide a framework for understanding previous genetic and biochemical observations.  相似文献   

6.
LexA repressor undergoes a self-cleavage reaction. In vivo, this reaction requires an activated form of RecA, but it occurs spontaneously in vitro at high pH. Accordingly, LexA must both allow self-cleavage and yet prevent this reaction in the absence of a stimulus. We have solved the crystal structures of several mutant forms of LexA. Strikingly, two distinct conformations are observed, one compatible with cleavage, and the other in which the cleavage site is approximately 20 A from the catalytic center. Our analysis provides insight into the structural and energetic features that modulate the interconversion between these two forms and hence the rate of the self-cleavage reaction. We suggest RecA activates the self-cleavage of LexA and related proteins through selective stabilization of the cleavable conformation.  相似文献   

7.
Autodigestion and RecA-dependent cleavage of Ind- mutant LexA proteins   总被引:17,自引:0,他引:17  
The LexA repressor of Escherichia coli undergoes a specific cleavage reaction in vivo, an event that leads to derepression of the SOS regulon and requires an activated form of RecA protein. In vitro, cleavage requires RecA at neutral pH; at alkaline pH, a spontaneous cleavage reaction termed autodigestion takes place. Both autodigestion and RecA-mediated cleavage cut the same bond, and are observed for the same set of substrates, suggesting that RecA acts indirectly to stimulate LexA self-cleavage at neutral pH, perhaps binding to LexA and acting as an allosteric effector. We previously isolated a set of lexA(Ind-) mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Here, we describe the in vitro cleavage of purified mutant proteins. All of those tested were deficient in both cleavage reactions. Although most of them were equally deficient in both reactions, some were more deficient in one reaction than the other. Several mutant proteins appeared to have defects in binding to RecA. Autodigestion of all but one of the poorly cleavable mutant proteins reached a maximum rate at pH around 10, as does wild-type LexA. The exception was KR156, which changed Lys156, a residue previously implicated in the mechanism of cleavage, to Arg, another basic residue: for this protein, the rate of autodigestion increased with pH at values above 11. RecA-mediated cleavage of KR156 was 1% the wild-type rate at pH 7, but increased with increasing pH to a plateau at pH 9.5, where the rate was 40% the wild-type rate. In contrast, an essentially constant rate was observed for wild-type LexA over the pH range 6 to 11. We suggest, first, that deprotonation of Arg156 and, by inference, Lys156 in the wild-type protein, is required for both autodigestion and RecA-mediated cleavage: and second, that RecA acts to reduce the pKa of Lys156, allowing efficient cleavage of wild-type repressor under physiological conditions.  相似文献   

8.
Summary The phenotype of the recA1730 mutant is highly dependent on the level of expression of the RecA1730 protein. If the recA1730 gene was expressed from its own promoter, the cells were deficient in recombination and SOS induction. In contrast, when the recA1730 gene was expressed under the control of recAo98, a constitutive operator that increased the RecA1730 concentration 20-fold, cells became proficient in recombination and SOS induction. Likewise, in crude extracts, fivefold more RecA1730 than RecAwt was required to produce full cleavage of LexA protein. The requirement for a high RecA1730 concentration for recombination and LexA cleavage suggests that the recA1730 defect alters a common reaction step. In fact, in vitro data show that the impaired assembly of RecA1730 protein on single-stranded DNA (ssDNA) can account for the mutant phenotype. Purified RecA1730 protein was assayed in vitro for ssDNA binding and ATPase activities. RecA1730, like RecAwt, retained ssDNA equally well on nitrocellulose filters; this activity was specifically inhibited by a monoclonal anti-RecA antibody. However, RecA1730 protein did not form complete filaments on ssDNA, as shown by two observations: (i) most of the protein did not elute with ssDNA during gel filtration; and (ii) binding of RecA1730 to ssDNA did not protect it from being digested by DNaseI. RecA1730 hydrolysed ATP in high salt but was defective in ssDNA-dependent ATP hydrolysis. These results strongly suggest that RecA1730 binds to ATP and ssDNA but does not form normal nucleoprotein filaments.Abbreviations RecAwt RecA wind-type protein - ssDNA singlestranded DNA - dsDNA dmble-stranded DNA  相似文献   

9.
The LexA repressor of Escherichia coli represses a set of genes that are expressed in the response to DNA damage. After inducing treatments, the repressor is inactivated in vivo by a specific cleavage reaction which requires an activated form of RecA protein. In vitro, specific cleavage requires activated RecA at neutral pH and proceeds spontaneously at alkaline pH. We have isolated and characterized a set of lexA mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Forty-six independent mutants, generated by hydroxylamine and formic acid mutagenesis, were isolated by a screen involving the use of operon fusions. DNA sequence analysis identified 20 different mutations. In a recA mutant, all but four of the mutant proteins functioned as repressor as well as wild-type LexA. In a strain carrying a constitutively active recA allele, recA730, all the mutant proteins repressed a sulA::lacZ fusion more efficiently than the wild-type repressor, presumably because they were cleaved poorly or not at all by the activated RecA protein. These 20 mutations resulted in amino acid substitutions in 12 positions, most of which are conserved between LexA and four other cleavable proteins. All the mutations were located in the hinge region or C-terminal domain of the protein, portions of LexA previously implicated in the specific cleavage reactions. Furthermore, these mutations were clustered in three regions, around the cleavage site (Ala-84-Gly-85) and in blocks of conserved amino acids around two residues, Ser-119 and Lys-156, which are believed essential for the cleavage reactions. These three regions of the protein thus appear to play important roles in the cleavage reaction.  相似文献   

10.
The RecA protein of Escherichia coli is required for SOS-induced mutagenesis in addition to its recombinational and regulatory roles. We have suggested that RecA might participate directly in targeted mutagenesis by binding preferentially to the site of the DNA damage (e.g. pyrimidine dimer) because of its partially unwound nature; DNA polymerase III will then encounter RecA-coated DNA at the lesion and might replicate across the damaged site more often but with reduced fidelity. In support of this proposal, we have found that the phenotype of wild-type and mutant RecA for mutagenesis correlates with capacity to bind to double-stranded DNA. Wild-type RecA binds more efficiently to ultraviolet (u.v.)-irradiated, duplex DNA than to non-irradiated DNA. The RecA441 (Tif) protein that is constitutive for mutagenesis binds extremely well to double-stranded DNA with no lesions, whereas the RecA430 protein that is defective in mutagenesis binds poorly even to u.v.-irradiated DNA. The RecA phenotype also correlates with capacity to use duplex DNA as a cofactor for cleavage of the LexA repressor protein for SOS-controlled operons. Wild-type RecA provides efficient cleavage of LexA only with u.v.-irradiated duplex DNA; RecA441 cleaves well with non-irradiated DNA; RecA430 gives very poor cleavage even with u.v.-irradiated DNA. We conclude that the interaction of RecA with damaged double-stranded DNA is likely to be a critical component of SOS mutagenesis and to define a pathway for the LexA cleavage reaction as well.  相似文献   

11.
Bacillus subtilis cells respond to double strand breaks (DSBs) with an ordered recruitment of repair proteins to the site lesion, being RecN one of the first responders. In B. subtilis, one of the responses to DSBs is to increase RecN expression rather than modifying its turnover rate. End-processing activities and the RecA protein itself contribute to increase RecN levels after DNA DSBs. RecO is required for RecA filament formation and full SOS induction, but its absence did not significantly affect RecN expression. Neither the absence of LexA nor the phosphorylation state of RecA or SsbA significantly affect RecN expression levels. These findings identify two major mechanisms (SOS and DSB response) used to respond to DSBs, with LexA required for one of them (SOS response). The DSB response, which requires end-processing and RecA or short RecO-independent RecA filaments, highlights the importance of guarding genome stability by modulating the DNA damage responses.  相似文献   

12.
J W Little 《Biochimie》1991,73(4):411-421
Specific LexA cleavage can occur under two different conditions: RecA-mediated cleavage requires an activated form of RecA, while an intramolecular self-cleavage termed autodigestion proceeds spontaneously at high pH and does not involve RecA. The two cleavage reactions are closely related. We postulate that RecA stimulates autodigestion rather than acting as a typical protease, and it is proposed to term this activity 'RecA coprotease' to emphasize this indirect role. The mechanism of autodigestion is similar to that of a serine protease, and RecA appears to act by reducing the pKa of a critical lysine residue LexA. A new class of mutants, termed lexA (IndS), is described; these mutations increase the rate of LexA cleavage.  相似文献   

13.
The activated form of the RecA protein (RecA) is known to be involved in the reactivation and mutagenesis of UV-irradiated bacteriophage lambda and in the expression of the SOS response in Escherichia coli K-12. The expression of the SOS response requires cleavage of the LexA repressor by RecA and the subsequent expression of LexA-controlled genes. The evidence presented here suggests that RecA induces the expression of a gene(s) that is not under LexA control and that is also necessary for maximal repair and mutagenesis of damaged phage. This conclusion is based on the chloramphenicol sensitivity of RecA -dependent repair and mutagenesis of damaged bacteriophage lambda in lexA(Def) hosts.  相似文献   

14.
Summary The chemical carcinogen N-acetoxy-N-2-acetylaminofluorene induces mainly frameshift mutations, which occur within two types of sequences (mutation hot spots): –1 frameshift mutations within contiguous guanine sequences and –2 frameshift mutations within alternating GC sequences such as the NarI and BssHII restriction site sequences. We have investigated the genetic control of mutagenesis at these sequences by means of a reversion assay using plasmids pW17 and pX2, which contain specific targets for contiguous guanine and alternating GC sequences, respectively. Our results suggest that mutations at these hot spot sequences are generated by two different genetic pathways, both involving induction of SOS functions. The two pathways differ both in their LexA-controlled gene and RecA protein requirements. In the mutation pathway that acts at contiguous guanine sequences, the RecA protein participates together with the umuDC gene products. In contrast, RecA is not essential for mutagenesis at alternating GC sequences, except to cleave the LexA repressor. The LexA-regulated gene product(s), which participate in this latter mutational pathway, do not involve umuDC but another as yet uncharacterized inducible function. We also show that wild-type RecA and RecA430 proteins exert an antagonistic effect on mutagenesis at alternating GC sequences, which is not observed either in the presence of activated RecA (RecA*), RecA730 or RecA495 proteins, or in the complete absence of RecA as in recA99. It is concluded that the –1 mutation pathway presents the same genetic requirements as the pathway for UV light mutagenesis, while the –2 mutation pathway defines a distinct SOS pathway for frameshift mutagenesis.  相似文献   

15.
Specific cleavage of LexA repressor plays a crucial role in the SOS response of Escherichia coli. In vivo, cleavage requires an activated form of RecA protein. However, previous work has shown that the mechanism of cleavage is unusual, in that the chemistry of cleavage is probably carried out by residues in the repressor, and not those in RecA; RecA appears to facilitate this reaction, acting as a coprotease. We recently described a new type of lexA mutation, a class termed lexA (IndS) and here called IndS, that confers an increased rate of in vivo cleavage. Here, we have characterized the in vitro cleavage of these IndS mutant proteins, and of several double mutant proteins containing an IndS mutation and one of several mutations, termed Ind-, that decrease the rate of cleavage. We found, first, that the autodigestion reaction for the IndS mutant proteins had a higher maximum rate and a lower apparent pKa than wild-type LexA. Second, the IndS mutations had little or no effect on the rate of RecA-mediated cleavage, measured at low protein concentrations, implying that the value of Kcat/Km was unaffected. Third, the rate of autodigestion for the double-mutant proteins, relative to wild-type, was about that rate predicted from the product of the effects of the two single mutations. Finally, by contrast, these proteins displayed the same rate of RecA-mediated cleavage as did the single Ind- mutant protein. We interpret these data to mean that the IndS mutations mimic to some extent the effect of RecA on cleavage, perhaps by favoring a conformational change in LexA. We present and analyze a model that embodies these conclusions.  相似文献   

16.
Streptococcus pneumoniae is a naturally transformable bacterium that is able to take up single-stranded DNA from its environment and incorporate the exogenous DNA into its genome. This process, known as transformational recombination, is dependent upon the presence of the recA gene, which encodes an ATP-dependent DNA recombinase whose sequence is 60% identical to that of the RecA protein from Escherichia coli. We have developed an overexpression system for the S. pneumoniae RecA protein and have purified the protein to greater than 99% homogeneity. The S. pneumoniae RecA protein has ssDNA-dependent NTP hydrolysis and NTP-dependent DNA strand exchange activities that are generally similar to those of the E. coli RecA protein. In addition to its role as a DNA recombinase, the E. coli RecA protein also acts as a coprotease, which facilitates the cleavage and inactivation of the E. coli LexA repressor during the SOS response to DNA damage. Interestingly, the S. pneumoniae RecA protein is also able to promote the cleavage of the E. coli LexA protein, even though a protein analogous to the LexA protein does not appear to be present in S. pneumoniae.  相似文献   

17.
RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root.  相似文献   

18.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

19.
Abstract

A complete three dimensional model for the LexA repressor dimer bound to the recA operator site consistent with relevant biochemical and biophysical data for the repressor was proposed from our laboratory when no crystal structure of LexA was available. Subsequently, the crystal structures of four LexA mutants Δ1–67 S119A, S119A, G85D and Δ1-67 quadruple mutant in the absence of operator were reported. It is examined in this paper to what extent our previous model was correct and how, using the crystal structure of the operator-free LexA dimer we can predict an improved model of LexA dimer bound to recA operator. In our improved model, the C-domain dimerization observed repeatedly in the mutant operator-free crystals is retained but the relative orientation between the two domains within a LexA molecule changes. The crystal structure of wild type LexA with or without the recA operator cannot be solved as it autocleaves itself. We argue that the ‘cleavable’ cleavage site region found in the crystal structures is actually the more relevant form of the region in wildtype LexA since it agrees with the value of the pre-exponential Arrhenius factor for its auto- cleavage, absence of various types of trans-cleavages, difficulty in modifying the catalytic serine by diisopropyl flourophosphate and lack of cleavage at Arg 81 by trypsin; hence the concept of a ‘conformational switch’ inferred from the crystal structures is meaningless.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号