首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
FeoB in bacteria and archaea is involved in the uptake of ferrous iron (Fe2+), an important cofactor in biological electron transfer and catalysis. Unlike any other known prokaryotic membrane protein, FeoB contains a GTP-binding domain at its N-terminus. We determined high-resolution X-ray structures of the FeoB G-domain from Methanococcus jannaschii with and without bound GDP or Mg2+-GppNHp. The G-domain forms the same dimer in all three structures, with the nucleotide-binding pockets at the dimer interface, as in the ATP-binding domain of ABC transporters. The G-domain follows the typical fold of nucleotide-binding proteins, with a β-strand inserted in switch I that becomes partially disordered upon GTP binding. Switch II does not contact the nucleotide directly and does not change its conformation in response to the bound nucleotide. Release of the nucleotide causes a rearrangement of loop L6, which we identified as the G5 region of FeoB. Together with the C-terminal helix, this loop may transmit the information about the nucleotide-bound state from the G-domain to the transmembrane region of FeoB.  相似文献   

2.
Prokaryotic pathogens have developed specialized mechanisms for efficient uptake of ferrous iron (Fe2+) from the host. In Legionella pneumophila, the causative agent of Legionnaires’ disease, the transmembrane GTPase FeoB plays a key role in Fe2+ acquisition and virulence. FeoB consists of a membrane-embedded core and an N-terminal, cytosolic region (NFeoB). Here, we report the crystal structure of NFeoB from L. pneumophila, revealing a monomeric protein comprising two separate domains with GTPase and guanine-nucleotide dissociation inhibitor (GDI) functions. The GDI domain displays a novel fold, whereas the overall structure of the GTPase domain resembles that of known G domains but is in the rarely observed nucleotide-free state.  相似文献   

3.
In many bacterial feo loci, the feoA gene is associated with the feoB gene. While the feoB-encoded FeoB protein has been demonstrated as a ferrous iron [Fe(II)] transporter, the function of the feoA gene product, FeoA, is unknown. In the present study, we report that the FeoA protein interacts with the FeoB Fe(II) transporter, which is required for FeoB-mediated Fe(II) uptake in Salmonella enterica. Iron uptake assay revealed that in the absence of FeoA, FeoB import of Fe(II) is impaired. Bacterial two-hybrid assay determined that the FeoA protein directly and specifically binds to the FeoB transporter in vivo. This FeoA-FeoB interaction appeared necessary for FeoB-mediated Fe(II) uptake because Salmonella expressing the mutant FeoA that cannot interact with FeoB failed to uptake Fe(II) via the FeoB transporter. Finally, we showed that the FeoA protein does not affect expression of the FeoB transporter per se.  相似文献   

4.
In the gammaproteobacteria, the FeoA, FeoB, and FeoC proteins constitute the Feo system, which mediates ferrous iron [Fe(II)] import. Of these Feo proteins, FeoB is an inner membrane Fe(II) transporter that is aided by the small protein FeoA. However, the role of another small protein, FeoC, has remained unknown. Here we report that the FeoC protein is necessary for FeoB protein-mediated Fe(II) uptake in Salmonella experiencing low levels of oxygen and iron. The FeoC protein was found to directly bind to the FeoB transporter, leading to high cellular levels of FeoB. Depletion of the FtsH protease enabled high levels of FeoB in the absence of FeoC, suggesting that the FeoC protein protects the FeoB transporter from FtsH-mediated proteolysis. Our present study provides a singular example of bacteria that can control expression of iron uptake systems posttranslationally by employing a small iron transporter-binding protein.  相似文献   

5.
Oxidized human neuroglobin (Ngb), a heme protein expressed in the brain, has been proposed to act as a guanine nucleotide dissociation inhibitor (GDI) for the GDP-bound form of the heterotrimeric G protein alpha-subunit (Galpha(i)). Here, to elucidate the molecular mechanism underlying the GDI activity of Ngb, we used an glutathione-S-transferase pull-down assay to confirm that Ngb competes with G-protein betagamma-subunits (Gbetagamma) for binding to Galpha(i), and identified the Galpha(i)-binding site in Ngb by chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and sulfo-N-hydroxysuccinimide, coupled with mass spectrometry (MS). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis for tryptic peptides derived from the cross-linked Ngb-Galpha(i) complex revealed several binding regions in Ngb. Furthermore, MALDI-TOF/TOF MS analysis of the cross-linked Ngb and Galpha(i) peptides, together with the MS/MS scoring method, predicted cross-linking between Glu60 (Ngb) and Ser206 (Galpha(i)), and between Glu53 (Ngb) and Ser44 (Galpha(i)). Because Ser206 of Galpha(i) is located in the region that contacts Gbetagamma, binding of Ngb could facilitate the release of Gbetagamma from Galpha(i). Binding of Ngb to Galpha(i) would also inhibit the exchange of GDP for GTP, because Ser44 (Galpha(i)) is adjacent to the GDP-binding site and Glu53 (Ngb), which is cross-linked to Ser44 (Galpha(i)), could be located close to GDP. Thus, we have identified, for the first time, the sites of interaction between Ngb and Galpha(i), enabling us to discuss the functional significance of this binding on the GDI activity of Ngb.  相似文献   

6.
The cytoplasmic membrane protein FeoB of Escherichia coli, Helicobacter pylori, Legionella pneumophila and Synechocystis sp. strain PCC 6803 is necessary for Fe(2+) uptake. The C-terminal part of FeoB is predicted to contain 8-12 membrane-spanning helices. The N-terminal domain shows much similarity to eukaryotic and prokaryotic G proteins and, indeed, GTPase activity is necessary for Fe(2+) transport. Four of the five characteristic conserved G protein motifs have been identified in FeoB proteins. Whether FeoB is involved directly, via its Me(2+) binding site, or indirectly in Fe(2+) transport, remains to be investigated.  相似文献   

7.
G proteins are key molecular switches in the regulation of membrane protein function and signal transduction. The prokaryotic membrane protein FeoB is involved in G protein coupled Fe2+ transport, and is unique in that the G protein is directly tethered to the membrane domain. Here, we report the structure of the soluble domain of FeoB, including the G protein domain, and its assembly into an unexpected trimer. Comparisons between nucleotide free and liganded structures reveal the closed and open state of a central cytoplasmic pore, respectively. In addition, these data provide the first observation of a conformational switch in the nucleotide‐binding G5 motif, defining the structural basis for GDP release. From these results, structural parallels are drawn to eukaryotic G protein coupled membrane processes.  相似文献   

8.
Members of the regulators of G protein signaling (RGS) family modulate Galpha-directed signals as a result of the GTPase-activating protein (GAP) activity of their conserved RGS domain. In addition to its RGS domain, RGS14 contains a Rap binding domain (RBD) and a GoLoco motif. To define the cellular and biochemical properties of RGS14 we utilized two different affinity purified antisera that specifically recognize recombinant and native RGS14. In brain, we observed two RGS14-like immunoreactive bands of distinct size (60 kDa and 55 kDa). Both forms are present in brain cytosol and in two, biochemically distinct, membrane subpopulations: one detergent-extractable and the other detergent-insensitive. Recombinant RGS14 binds specifically to activated Galphai/o, but not Galphaq/11, Galpha12/13, or Galphas in brain membranes. In reconstitution studies, we found that RGS14 is a non-selective GAP for Galphai1 and Galphao and that full-length RGS14 is an approximately 10-fold more potent stimulator of Galpha GTPase activity than the RGS domain alone. In contrast, neither full-length RGS14 nor the isolated RBD domain is a GAP for Rap1. RGS14 is also a highly selective guanine nucleotide dissociation inhibitor (GDI) for Galphai but not Galphao, and this activity is restricted to the C-terminus containing the GoLoco domain. These findings highlight previously unknown biochemical properties of RGS14 in brain, and provide one of the first examples of an RGS protein that is a bifunctional regulator of Galpha actions.  相似文献   

9.
A novel regulatory protein for rhoB p20, a ras p21-like GTP-binding protein (G protein), was partially purified from the cytosol fraction of rabbit intestine. This protein, designated as rhoB p20 GDP dissociation inhibitor (GDI), inhibited the dissociation of GDP from rhoB p20. rhoB p20 GDI also inhibited the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to the GDP-bound form of rhoB p20 but not of that to the guanine nucleotide-free form. GDI did not affect the GTPase activity of rhoB p20 and by itself showed no GTP gamma S-binding activity. GDI was inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p21 and smg p25A. The Mr value of GDI was estimated to be about 27,000 from the S value. These results indicate that rabbit intestine contains a novel regulatory protein that inhibits the dissociation of GDP from and thereby the subsequent binding of GTP to rhoB p20.  相似文献   

10.
We have recently purified from bovine brain cytosol a novel type of regulatory protein for smg p25A, named smg p25A GDP dissociation inhibitor (GDI), that regulates the GDP/GTP exchange reaction of smg p25A by inhibiting the dissociation of GDP from and thereby the subsequent binding of GTP to it. This smg p25A GDI is inactive for other ras p21/ras p21-like small GTP-binding proteins (G proteins) including c-Ha-ras p21, smg p21, rhoA p21 and rhoB p20. In human platelet membranes, smg p25A was not detected but a G protein with an apparent Mr value of 24,000 (24KG) was recognized by smg p25A GDI and the dissociation of GDP from and the binding of GTP to 24KG were inhibited by smg p25A GDI. The doses of smg p25A GDI necessary for these activities for both 24KG and smg p25A were the same. This 24KG was not recognized by an anti-smg p25A monoclonal antibody. The GDI activity for human platelet 24KG and smg p25A was detected in human platelet cytosol. This human platelet GDI was recognized by an anti-smg p25A GDI polyclonal antibody. These results indicate that there is a 24KG-24KG GDI system similar to a smg p25A-smg p25A GDI system in human platelets.  相似文献   

11.
A regulatory protein for a liver GTP-binding protein (G protein) with a molecular weight value of 24,000 (24K G), which we have recently purified, was purified to near-homogeneity from rat liver cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor for 24K G (24K G GDI), inhibited the dissociation of GDP from and the subsequent binding of GTP to 24K G. 24K G GDI was inactive for other ras p21/ras p21-like small G proteins including c-Ha-ras p21, rhoB p20, smg p21B, and smg p25A. 24K G was, however, recognized by bovine brain smg p25A GDI which regulated the GDP/GTP exchange reaction of smg p25A. By analyses of sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), immunoblotting with anti-smg p25A GDI antibody, two-dimensional PAGE, and C4 column chromatography, 24K G GDI showed physical properties very similar to those of smg p25A GDI. The peptide map and the partial amino acid sequences of 24K G GDI were not identical with those of smg p25A GDI. Among the 83 residues, 2 amino acids were different between rat liver 24K G GDI and bovine brain smg p25A GDI. These results indicate that there is a specific regulatory protein for 24K G, 24K G GDI, in rat liver cytosol and that 24K G GDI has close similarity to smg p25A GDI.  相似文献   

12.
We characterized the role of guanine nucleotide dissociation inhibitor (GDI) in RhoA/Rho-kinase-mediated Ca2+ sensitization of smooth muscle. Endogenous contents (approximately 2-4 microM) of RhoA and RhoGDI were near stoichiometric, whereas a supraphysiological GDI concentration was required to relax Ca2+ sensitization of force by GTP and guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). GDI also inhibited Ca2+ sensitization by GTP. G14V RhoA, by alpha-adrenergic and muscarinic agonists, and extracted RhoA from membranes. GTPgammaS translocated Rho-kinase to a Triton X-114-extractable membrane fraction. GTP. G14V RhoA complexed with GDI also induced Ca2+ sensitization, probably through in vivo dissociation of GTP. RhoA from the complex, because it was reversed by addition of excess GDI. GDI did not inhibit Ca2+ sensitization by phorbol ester. Constitutively active Cdc42 and Rac1 inhibited Ca2+ sensitization by GTP. G14V RhoA. We conclude that 1) the most likely in vivo function of GDI is to prevent perpetual "recycling" of GDP. RhoA to GTP. RhoA; 2) nucleotide exchange (GTP for GDP) on complexed GDP. RhoA/GDI can precede translocation of RhoA to the membrane; 3) activation of Rho-kinase exposes a hydrophobic domain; and 4) Cdc42 and Rac1 can inhibit Ca2+ sensitization by activated GTP. RhoA.  相似文献   

13.
GDP‐bound prenylated Rabs, sequestered by GDI (GDP dissociation inhibitor) in the cytosol, are delivered to destined sub‐cellular compartment and subsequently activated by GEFs (guanine nucleotide exchange factors) catalysing GDP‐to‐GTP exchange. The dissociation of GDI from Rabs is believed to require a GDF (GDI displacement factor). Only two RabGDFs, human PRA‐1 and Legionella pneumophila SidM/DrrA, have been identified so far and the molecular mechanism of GDF is elusive. Here, we present the structure of a SidM/DrrA fragment possessing dual GEF and GDF activity in complex with Rab1. SidM/DrrA reconfigures the Switch regions of the GTPase domain of Rab1, as eukaryotic GEFs do toward cognate Rabs. Structure‐based mutational analyses show that the surface of SidM/DrrA, catalysing nucleotide exchange, is involved in GDI1 displacement from prenylated Rab1:GDP. In comparison with an eukaryotic GEF TRAPP I, this bacterial GEF/GDF exhibits high binding affinity for Rab1 with GDP retained at the active site, which appears as the key feature for the GDF activity of the protein.  相似文献   

14.
A novel regulatory protein for the rho proteins (rhoA p21 and rhoB p20), belonging to a ras p21/ras p21-like small molecular weight (Mr) GTP-binding protein (G protein) superfamily, was purified to near homogeneity from bovine brain cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor (GDI) for the rho proteins (rho GDI), inhibited the dissociation of GDP from rhoB p20 and the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to the GDP-bound form of rhoB p20 but not of that to the guanine nucleotide-free form. The Mr value of rho GDI was estimated to be about 27,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S value, indicating that rho GDI is composed of a single polypeptide without a subunit structure. The isoelectric point was about pH 5.7. rho GDI made a complex with the GDP-bound form of rhoB p20 with a molar ratio of 1:1 but not with the GTP gamma S-bound or guanine nucleotide-free form. rho GDI did not stimulate the GTPase activity of rhoB p20 and by itself showed neither GTP gamma S-binding nor GTPase activity. rho GDI was equally active for rhoA p21 and rhoB p20 but was inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p25A, and smg p21. rho GDI activity was detected in the cytosol fraction of various rat tissues. These results indicate that, in mammalian tissues, there is a novel type of regulatory protein specific for the rho proteins that interacts with the GDP-bound form of the rho proteins and thereby regulates the GDP/GTP exchange reaction of the rho proteins by inhibiting the dissociation of GDP from and the subsequent binding of GTP to them. Since there is a GTPase-activating protein for the rho proteins stimulating the GTPase activity of the rho proteins in mammalian tissues, the rho proteins appear to be regulated at least by GTPase-activating protein and GDI in a dual manner.  相似文献   

15.
GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.  相似文献   

16.
Summary: Rab GTPases are essential for vesicular transport. Rab GDP dissociation inhibitor (GDI) binds to GDP‐bound rabs, removes rabs from acceptor membranes and delivers rabs to donor membranes. We isolated lethal GDI mutations in Drosophila and analyzed their developmental phenotypes. To learn how these mutations affect GDI structure, the crystal structure of Drosophila GDI was determined by molecular replacement to a resolution of 3.0 Å. Two hypomorphic, missense mutations are located in domain II of GDI at highly conserved positions, but not in previously identified sequence conserved regions. The mutant GDIs were tested for ability to extract rabs from membranes and showed wild‐type levels of rab membrane extraction. The two missense alleles showed intragenic complementation, indicating that domain II of GDI may have two separable functions. This study indicates that GDI function is essential for development of a complex, multicellular organism and that puparium formation and pole cell formation are especially dependent on GDI function. genesis 31:17–29, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

17.
Sec2 is a reversibly membrane associated multi-domain protein with guanine nucleotide exchange activity towards the yeast Rab-protein Sec4. Both proteins are localized to secretory vesicles destined for exocytosis. We have used transient kinetic methods to show that Sec2 is a highly active exchange factor, in contrast to other proteins previously characterized as Rab exchange factors. With a K(d) value for the Sec2:Sec4.GDP interaction of ca 70 microM and a maximal rate of GDP displacement of ca 15 s(-1), it is 100-1000-fold more effective than other proteins showing exchange activity towards Rabs (MSS4, DSS4, Vps9) and ca tenfold faster than Cdc25 as a Ras specific exchanger, although still 100-fold slower than the fastest systems studied so far, EF-Tu/Ef-Ts and Ran/RCC1. A comparison with other proteins showing Rab exchange activity shows that maximal rates of GDP dissociation catalyzed by Sec2 are orders of magnitude faster. When comparing Sec2 with DSS4, which also acts on Sec4, the difference was particularly dramatic. Another difference is seen in the kinetics of association of GTP with the Sec4:Sec2 complex, a process which is extremely slow for DSS4/MSS4 complexes with cognate Rabs but in the range observed for other GTPase:exchanger complexes for Sec4:Sec2., It is suggested that systems such as Ef-Tu/Ef-Ts and Ran/RCC1 have evolved for maximal possible activity for the interaction between two soluble proteins, whereas other evolutionary constraints which are connected to the spatial and temporal coordination of events in vesicular transport and other regulatory networks have determined the detailed kinetic properties of the other systems.  相似文献   

18.
In eukaryotic cells Rab/Ypt GTPases represent a family of key membrane traffic controllers that associate with their targeted membranes via C-terminally conjugated geranylgeranyl groups. GDP dissociation inhibitor (GDI) is a general and essential regulator of Rab recycling that extracts prenylated Rab proteins from membranes at the end of their cycle of activity and facilitates their delivery to the donor membranes. Here, we present the structure of a complex between GDI and a doubly prenylated Rab protein. We show that one geranylgeranyl residue is deeply buried in a hydrophobic pocket formed by domain II of GDI, whereas the other lipid is more exposed to solvent and is skewed across several atoms of the first moiety. Based on structural information and biophysical measurements, we propose mechanistic and thermodynamic models for GDI and Rab escort protein-mediated interaction of RabGTPase with intracellular membranes.  相似文献   

19.
The ras-related protein, CDC42Hs, is a 22-kDa GTP-binding protein which is the human homolog of a Saccharomyces cerevisiae yeast-cell-division cycle protein. In attempting to isolate and biochemically characterize mammalian proteins capable of regulating various activities of CDC42Hs, we have identified an activity in bovine brain cytosol which effectively inhibits the dissociation of [3H]GDP from the platelet- or the Spodoptera frugiperda-expressed CDC42Hs protein. The purification of this activity was achieved by a series of steps which included ammonium sulfate fractionation, DEAE-Sephacel, Mono-Q, and Mono-S chromatographies. The purified CDC42Hs regulatory protein has an apparent molecular weight of 28,000, and cyanogen bromide-generated peptide sequences of this protein were identical to sequences from the carboxyl-terminal portion of rho-GDP-dissociation inhibitor (rho-GDI) (Fukumoto, Y., Kaibuchi, K., Hori, Y., Fujioka, H., Araki, S., Ueda, T., Kikuchi, A., and Takai, Y. (1990) Oncogene 5, 1321-1328). In addition, an Escherichia coli-expressed, glutathione S-transferase-rho-GDI fusion protein fully substitutes for the GDI which we have purified from bovine brain in its ability to inhibit GDP dissociation from CDC42Hs. These findings suggest either that a common regulatory protein (GDI) is capable of inhibiting GDP dissociation from the rho and CDC42Hs proteins or that these two GTP-binding proteins interact with GDI proteins of very similar structure. The purified brain GDI protein shows little ability to inhibit GDP dissociation from the E. coli-expressed CDC42Hs and is capable of only a very weak inhibition of the dissociation of [35S]guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) from the Spodoptera frugiperda-expressed CDC42. However, brain GDI very effectively inhibits the ability of the human dbl oncogene product to catalyze GDP dissociation from CDC42Hs. In addition to influencing guanine nucleotide association with CDC42Hs, the purified brain GDI protein also appears to catalyze the dissociation of CDC42Hs from the plasma membranes of human placenta and human epidermoid carcinoma (A431) cells. This effect by the GDI protein is observed whether the membrane-associated CDC42Hs is preincubated with GDP, GTP gamma S, or no guanine nucleotides, and occurs over a similar concentration range as that necessary for the inhibition of the intrinsic GDP dissociation.  相似文献   

20.
Ja WW  Roberts RW 《Biochemistry》2004,43(28):9265-9275
The G protein regulatory (GPR) motif is a approximately 20-residue conserved domain that acts as a guanine dissociation inhibitor (GDI) for G(i/o)(alpha) subunits. Here, we describe the isolation of peptides derived from a GPR consensus sequence using mRNA display selection libraries. Biotinylated G(i)(alpha)(1), modified at either the N or C terminus, serves as a high-affinity binding target for mRNA-displayed GPR peptides. In vitro selection using mRNA display libraries based on the C terminus of the GPR motif revealed novel peptide sequences with conserved residues. Surprisingly, selected peptides contain mutations to a highly conserved Arg in the GPR motif, previously shown to be crucial for binding and inhibition activities. The dominant peptide from the selection, R6A, and a minimal 9-mer peptide, R6A-1, do not contain Arg residues yet retain high affinity (K(D) = 60 and 200 nM, respectively) and specificity for the GDP-bound state of G(i)(alpha)(1), as measured by surface plasmon resonance. The selected peptides also maintain GDI activity for G(i)(alpha)(1), inhibiting both the exchange of GDP in GTPgammaS binding assays and the AlF(4)(-)-stimulated enhancement of intrinsic tryptophan fluorescence. The kinetics of GDI activity, however, are different for the selected peptides and demonstrate biphasic kinetics, suggesting a complex mechanism for inhibition. Like the GPR motif, the R6A and R6A-1 peptides compete with G(betagamma) subunits for binding to G(i)(alpha)(1), suggesting their use as activators of G(betagamma) signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号