首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The rice Waxy (Wx) gene encodes granule‐bound starch synthase 1 (EC 2.4.1.242), OsGBSS1, which is responsible for amylose synthesis in rice seed endosperm. In this study, we determined the functional contribution of eight amino acids on the activity of OsGBSS1 by introducing site‐directed mutated Wx gene constructs into the wx mutant glutinous rice. The eight amino acid residues are suspected to play roles in OsGBSS1 structure maintenance or function based on homologous enzyme sequence alignment and homology modelling. Both OsGBSS1 activity and amylose content were analysed in homozygous transgenic lines carrying the mutated OsGBSS1 (Wx) genes. Our results indicate that mutations at diverse sites in OsGBSS1 reduces its activity by affecting its starch‐binding capacity, its ADP‐glucose‐binding capability or its protein stability. Our results shed new light on the structural basis of OsGBSS1 activity and the mechanisms of OsGBSS1 activity on amylose synthesis in vivo. This study also demonstrates that it is feasible to finely modulate amylose content in rice grains by modifying the OsGBSS1 activity.  相似文献   

5.
6.
7.
Apparent amylose content (AAC), gel consistency (GC), and gelatinization temperature (GT) are recognized as the most important determinants of rice eating and cooking qualities. The contributions of major starch-synthesis genes to these three traits have been investigated in the three consecutive experiments. In an initial QTL mapping with 130 doubled haploid (DH) lines, derived from an inter-subspecific cross of ‘Nanjing11’/‘Balilla’, the major QTLs responsible for AAC, GC, and GT coincided with the Wx (granule-bound starch synthase gene), Wx, and Sss IIa (soluble starch synthase gene) loci, respectively. In the second experiment, contributions of the major starch-synthesis genes to AAC, GC, and GT variations were estimated by using a multiple linear regression analysis. As shown, the Wx locus was a principal determinant for both AAC and GC, and could account for 58.5% and 38.9% of the phenotypic variations, respectively; while the Sss IIa locus was associated with GT, and could explain 25.5% of the observed variation. Eventually, a F2 population consisting of 501 individuals, derived from an inter-subspecific cross of the two sticky rice varieties ‘Suyunuo’ and ‘Yangfunuo 4’, was examined with gene-tagged markers. In the absence of the Wx gene, none of the starch-synthesis genes investigated could dominate the GC variation, however, the Sss IIa locus could also explain 25.1% of the GT variation. In summary, the Wx locus dominates the AAC variation, and meanwhile plays a major role in the GC variation. The Sss IIa locus is a major factor in explaining the GT variation. Apart from the major genes, other genetic factors may also contribute to the GC/GT variations.  相似文献   

8.
Common non-waxy (Wx) rice cultivars contain two different alleles at the waxy locus, designated Wx a and Wx b, which encode different levels of granule-bound starch synthases and are hence involved in the control of endosperm amylose content. The Wx a allele was predominant in non-waxy indica cultivars, whereas the Wx b allele was common to the non-waxy japonica variety. Recently, some of the molecular mechanisms underlying the differentiation of Wx a from Wx b have been characterized. One structural difference between these two alleles was shown to be due to alternative splicing caused by a single-base substitution (AGGT to AGTT) at a donor site of the first intron within the Wx gene. In the case of waxy (wx) rice, it was not possible to distinguish whether the each wx allele was derived from Wx a or Wx b alleles by phenotypic analysis. However, we succeeded in developing a derived cleaved amplified polymorphic sequence (dCAPS) marker for the detection of the one-base splicing mutation without the need for sequencing. A mismatch primer was used to generate a restriction site in the Wx a allele (AGGT) but not in the Wx b allele (AGTT). Three hundred fifty-three waxy rice strains that are widely found in Asia were then employed for analysis using this dCAPS marker. Our findings suggested that waxy rice strains have both Wx a- and Wx b-derived alleles, but that the Wx b-derived allele was predominant, and its distribution was independent of indica-japonica differentiation. The wild relatives of cultivated rice all possessed the AGGT allele. It was concluded that the waxy mutations, and the corresponding rice cultivation, originated from japonica during the evolution and domestication process of rice and was preferentially selected by most Asian peoples.Communicated by J. Heslop-Harrison  相似文献   

9.
The characteristics of starch, such as gelatinization temperature (GT), apparent amylose content (AAC), pasting temperature (PT) and other physicochemical properties, determine the quality of various products of rice, e.g., eating, cooking and processing qualities. The GT of rice flour is controlled by the alk locus, which has been co-mapped to the starch synthase IIa (SSIIa) locus. In this study, we sequenced a 2,051 bp DNA fragment spanning part of intron 6, exon 7, intron 7, exon 8 and part of 3′ untranslated region of SSIIa for 30 rice varieties with diverse geographical distribution and variation in starch physicochemical properties. A total of 24 single nucleotide polymorphisms (SNPs) and one insertion/deletion (InDel) were identified, which could be classified into nine haplotypes. The mean pairwise nucleotide diversity π was 0.00292, and Watterson’s estimator θ was 0.00296 in this collection of rice germplasm. Tajima’s D test for selection showed no significant deviation from the neutral expectation (D = − 0.04612, P > 0.10). However, significant associations were found between seven of the SNPs and peak GT (T p) at P < 0.05, of which two contiguous SNPs (GC/TT) showed a very strong association with T p (P < 0.0001). With some rare exception, this GC/TT polymorphism alone can differentiate rice varieties with high or intermediate GT (possessing the GC allele) from those with low GT (possessing the TT allele). In contrast, none of these SNPs or InDel was significantly associated with amylose content. A further 509 rice varieties with known physicochemical properties (e.g., AAC and PT) and known alleles of other starch synthesizing genes were genotyped for the SSIIa GC/TT alleles. Association analysis indicated that 82% of the total variation of AAC in these samples could be explained by a (CT)n simple sequence repeat (SSR) and a G/T SNP of Waxy gene (Wx), and 62.4% of the total variation of PT could be explained by the GC/TT polymorphism. An additional association analysis was performed between these molecular markers and the thermal and retrogradation properties for a subset of 245 samples from the 509 rice varieties. The SSIIa GC/TT polymorphism explained more than 60% of the total variation in thermal properties, whereas the SSR and SNP of Wx gene explained as much as the SSIIa GC/TT of the total variation in retrogradation properties. Our study provides further support for the utilization of the GC/TT polymorphism in SSIIa. As shown in our study of 509 rice varieties, the GC/TT SNP could differentiate rice with high or intermediate GT from those with low GT in about 90% of cases. Using four primers in a single PCR reaction, the GC/TT polymorphism can be surveyed on a large scale. Thus, this SNP polymorphism can be very useful in marker-assisted selection for the improvement of GT and other physicochemical properties of rice.  相似文献   

10.
Differential regulation of waxy gene expression in rice endosperm   总被引:36,自引:0,他引:36  
Summary In order to examine the effects of different alleles on the gene expression at the waxy locus, the Wx gene product which controls the synthesis of amylose was isolated from endosperm starch of rice plants and analysed by electrophoretic techniques. The major protein bound to starch granules was absent in most of waxy strains and increased with the number of Wx alleles in triploid endosperms, suggesting that the major protein is the Wx gene product. In addition to wx alleles which result in the absence or drastic reduction of the Wx gene product and amylose, differentiation of Wx alleles seemed to have occurred among nonwaxy rice strains. At least two Wx alleles with different efficiencies in the production of the major protein as well as amylose were detected. These alleles are discussed in relation to regulation of the gene expression.  相似文献   

11.
The cooking and eating quality of the rice grain is one of the most serious problems in many rice-producing areas of the world. In this study, we conducted a molecular marker-based genetic analysis of three traits, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT), that are the most important constituents of the cooking and eating quality of rice grains. The materials used in the analysis included F2 seeds, an F2:3 population, and an F9 recombinant inbred-line population from a cross between the parents of ’Shanyou 63’, the most widely grown hybrid in rice production in China. Segregation analyses of these three generations showed that each of the three traits was controlled by a single Mendelian locus. Molecular marker-based QTL (quantitative trait locus) analyses, both by one-way analysis of variance using single marker genotypes and by whole-genome scanning with MAPMAKER/QTL, revealed a single locus that controls the expression of all three traits. This locus coincided with the Wx region on the short arm of chromosome 6, indicating that all three traits were either controlled by the Wx locus or by a genomic region tightly linked to this locus. This finding has provided clues to resolving the molecular bases of GC and GT in future studies. The results also have direct implications for the quality improvement of rice varieties. Received: 5 January 1999 / Accepted 30 January 1999  相似文献   

12.
In the alkaliviscogram of starch of 26 nonwaxy rices grown in the tropics, gelatinization normality correlated positively with final gelatinization temperature (BEPT) of starch (r=0.969**) and negatively with alkali spreading value of milled rice (r= ?0.931**). Peak viscosity was not linearly related to amylose content. Among samples of rice starch having a high amylose (>28%) content, peak viscosity was correlated with the gel consistency of starch (r=?0.690**) and of milled rice (r=?0.644**) (n = 18). These high-amylose starches showed the widest variation in peak viscosity. Amylose content, and gel consistency were inherited from the same parent in all nine varieties and lines studied, whereas peak viscosity, gelatinization normality and the final BEPT were inherited from either parent. The starch of five waxy rices showed higher peak viscosities even at a concentration of 1.8% as compared with a 2.0% nonwaxy rice starch.  相似文献   

13.
 The Waxy gene (Wx) encodes the granule-bound starch synthase responsible for the synthesis of amylose in rice (Oryza sativa). Recently, a polymorphic microsatellite sequence closely linked to the Wx gene was reported. To determine whether polymorphism in this sequence correlates with variation in apparent amylose content, we tested an extended pedigree of 92 current and historically important long-, medium- and short-grain US rice cultivars representing the efforts of many breeders over more than 80 years. Seven Wx microsatellite alleles were identified which together explained 82.9% of the variation in apparent amylose content of the 89 non-glutinous rice cultivars tested. Similar results were also obtained with 101 progenyof a cross between low- and intermediate-amylose breeding lines. An additional, unique microsatelliteallele, (CT)16, was detected in one glutinous cultivar,CI 5309. However, the other glutinous cultivars,Calmochi 101 and Tatsumi mochi, were in the (CT)17 class along with three other cultivars that contained15–16.5% amylose. We sequenced a 200-bp PCR-amplified fragment containing the CT microsatellite and the putative 5′ splice site of the Wx leader intron from a subset of 42 cultivars representing all eight microsatellite alleles. All of the cultivars with 18% or less amylose had the sequence AGTTATA at the putative leader intron 5′ splice site, while all cultivars with a higher proportionof amylose had AGTTATA. This single nucleotidesubstitution could also be assayed by AccI digestion of the amplified fragment. Overall, this single nucleotide polymorphism could explain 79.7% of the variation in the apparent amylose content of the 89 non-glutinous cultivars tested. Interestingly, cultivars in the (CT)19 microsatellite classes that differed substantially in amylose content still showed the correlation between this G-T polymorphism and apparent amylose content. The G-T polymorphism at this site was not, however, able to explain the very low amylose contents of the three glutinous cultivars tested, all of which had the sequence AGTTATA. Received: 31 July 1996 / Accepted: 22 November 1996  相似文献   

14.
Eating quality is of paramount importance to rice (Oryza sativa L.) consumers and soft rice with low amylose content has become popular in China. This study was conducted to evaluate the performance of soft rice grown in the early season (ES) dominated by non-soft rice. Field experiments were conducted in Yongan and Santang, Hunan Province, China from 2016-2018. Results showed that grain amylose content in soft rice cultivars was consistently lower in the ES compared to the late season (LS). The lower grain amylose content in the ES compared to the LS was partly attributed to higher average daily mean temperature during grain filling. No significant relationship was observed between grain yield and seed amylose content in ES rice. Soft rice cultivars produced a similar average grain yield to non-soft rice cultivars in the ES. These results encourage breeders to develop more ES rice cultivars with soft texture to meet the consumer demand for this type of rice.  相似文献   

15.
16.
High amylose content (AC) in rice endosperm is correlated with poor grain quality, particularly in indica hybrid rice. We have generated several homozygous transgenic parent lines of indica hybrid rice carrying an antisense Waxy (Wx) gene and demonstrated that the AC in seeds of these lines decreased dramatically. Two transgenic maintainer lines (L25B and L18B), derived from one of the key maintainer parents of an indica hybrid rice in China, Long-te-fu B (LTF-B), were selected and the antisense Wx gene was subsequently introgressed into the male-sterile counterpart, LTF-A, with the aim to generate improved indica hybrids. The indica hybrids derived from the selected transgenic male-sterile lines and restorer lines were tested for quality and agronomic performance under normal field conditions. Our results demonstrated that the reduction of AC in the homozygous transgenic maintainer lines stably passed down in five successive generations and the improved quality was also found in their relevant transgenic hybrids produced. The other two key characters of rice cooking and eating quality, the gel consistence (GC) and gelatinization temperature (GT), were also improved in the grains of both the transgenic maintainer lines and their relevant hybrids. In addition, no change was observed for most of the agronomic characters of the transgenic maintainer lines and the relevant transgenic hybrids. Although the grain weight of the transgenic line was reduced, the grain yield of the homozygous transgenic parent lines and the transgenic hybrids was similar when compared with that of the wild-type controls. These results suggest that transgenic approaches are an effective way to obtain rice lines with both improved qualities and high yield, especially for indica hybrid rice.  相似文献   

17.
To examine continuous variation of amylose levels in Asian rice (Oryza sativa) landraces, the five putative alleles (Wx a , Wx in , Wx b , Wx op , and wx) at the wx locus were investigated in near-isogenic lines (NILs). Apparent amylose levels ranged from 0.5 to 29.9% in the NILs, showing a positive relation with the levels of Wx gene product, granule-bound starch synthase (GBSS) as well as the enzymatic activity per milligram starch granule. Only opaque (Wx op ) accessions had an enzymatic activity per GBSS that was reduced to half the level of the others. Nucleotide sequences in the Wx gene were compared among 18 accessions harboring the five different alleles. Each of the Wx alleles had a unique replacement, frame-shift or splice donor site mutation, suggesting that these nucleotide changes could be reflected in phenotype alterations. A molecular phylogenetic tree constructed using the Wx gene indicated that ssp. japonica forms a distinct clade, whereas ssp. indica forms different clades together with the wild progenitor. Unexpectedly, the wx allele of 160 (indica from Taiwan) joined the japonica lineage; however, comparisons using linked genes for two Taiwanese accessions revealed that the wx gene was the product of gene flow from japonica to indica. Therefore, the japonica lineage frequently included Wx in , Wx b and wx, while Wx a and Wx op were found in the other lineages, strongly suggesting that allelic diversification occurred after divergence of the two subspecies. The present results were discussed in relation to the maintenance of agronomically valuable genes in various landraces.  相似文献   

18.
Perisperm starch granules of the dicotyledonous plant Amaranthus hypochondriacus L. were prepared from two homozygous lines (WxWx and wxwx) and their hybrid (Wxwx). The hybrid line was obtained by natural hybridization. By Sephadex G-75 column chromatography of isoamylase-debranched starches, the amylose content of WxWx starch was 16.9%, that of Wxwx was 10.7, and wxwx was zero. SDS-polyacrylamide gel electrophoresis showed that starch granules from two genotypes (WxWx and Wxwx) contained a Wx protein (MW = 68,000) which was supposed to be a starch granule-bound starch synthase and was associated with amylose synthesis, as observed in nonwaxy maize. The intensities of the stained protein bands were apparently correlated with the number of the Wx alleles. The Wx protein was not detected in the wxwx starch. These findings suggest that the Wx allele produces the Wx protein and amylose in the perisperm of A. hypochondriacus, with incomplete dominance over the wx allele. The Wx allele did not affect the fine structure of amylopectin and had little if any effect on susceptibility to glucoamylase and pasting properties of starch granules from these genotypes.  相似文献   

19.

Key message

We discovered four QTLs that maintain proper rice amylose content at high temperature by increasing the splicing efficiency of Wx gene.

Abstract

Amylose content mainly controlled by Wx gene is a key physicochemical property for eating and cooking quality in rice. During the grain filling stage, high temperature can harm rice grain quality by significantly reducing the amylose content in many rice varieties. Here, we provide genetic evidences between Wx gene expression and rice amylose content at high temperature, and identified several quantitative trait loci (QTLs) in this pathway. We performed a genome-wide survey on a set of chromosome segment substitution lines (CSSLs) which carried chromosomal segments from the heat resistant indica 9311 in the heat-sensitive japonica Nipponbare background. Four QTLs, qHAC4, qHAC8a, qHAC8b and qHAC10, which can reduce the deleterious effects of amylose content at high temperature, were identified and mapped to chromosome 4, 8, 8 and 10, respectively. The major QTL qHAC8a, with the highest LOD score of 6.196, was physically mapped to a small chromosome segment (~300 kb). The CSSLs carrying the qHAC8a, qHAC8b and/or qHAC4 from 9311 have the high pre-mRNA splicing efficiency of Wx gene and likely lead to stable amylose content at high temperature. Thus, increasing pre-mRNA processing efficiency of Wx gene could be an important regulation mechanism for maintaining stable amylose content in rice seeds at high temperature. In addition, our results provide a theoretical basis for breeding heat-stable grain in rice.  相似文献   

20.
To ensure food security in Africa and Asia, developing sorghum varieties with grain quality that matches consumer demand is a major breeding objective that requires a better understanding of the genetic control of grain quality traits. The objective of this targeted association study was to assess whether the polymorphism detected in six genes involved in synthesis pathways of starch (Sh2, Bt2, SssI, Ae1, and Wx) or grain storage proteins (O2) could explain the phenotypic variability of six grain quality traits [amylose content (AM), protein content (PR), lipid content (LI), hardness (HD), endosperm texture (ET), peak gelatinization temperature (PGT)], two yield component traits [thousand grain weight (TGW) and number of grains per panicle (NBG)], and yield itself (YLD). We used a core collection of 195 accessions which had been previously phenotyped and for which polymorphic sites had been identified in sequenced segments of the six genes. The associations between gene polymorphism and phenotypic traits were analyzed with Tassel. The percentages of admixture of each accession, estimated using 60 RFLP probes, were used as cofactors in the analyses, decreasing the proportion of false-positive tests (70%) due to population structure. The significant associations observed matched generally well the role of the enzymes encoded by the genes known to determine starch amount or type. Sh2, Bt2, Ae1, and Wx were associated with TGW. SssI and Ae1 were associated with PGT, a trait influenced by amylopectin amount. Sh2 was associated with AM while Wx was not, possibly because of the absence of waxy accessions in our collection. O2 and Wx were associated with HD and ET. No association was found between O2 and PR. These results were consistent with QTL or association data in sorghum and in orthologous zones of maize. This study represents the first targeted association mapping study for grain quality in sorghum and paves the way for marker-aided selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号