首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The obligate intracellular pathogen Chlamydia trachomatis expresses a type III secretion system (T3SS) which has the potential to contribute significantly to pathogenesis. Based on a demonstrated role of type III secretion (T3S)-specific chaperones in the secretion of antihost proteins by gram-negative pathogens, we initiated a study of selected putative Chlamydia T3S chaperones in an effort to gain mechanistic insight into the Chlamydia T3SS and to potentially identify Chlamydia-specific secreted products. C. trachomatis Scc2 and Scc3 are homologous to SycD of Yersinia spp. Functional studies of the heterologous Yersinia T3SS indicated that although neither Scc2 nor Scc3 was able to fully complement a sycD null mutant, both have SycD-like characteristics. Both were able to associate with the translocator protein YopD, and Scc3 expression restored limited secretion of YopD in in vitro studies of T3S. CopB (CT578) and CopB2 (CT861) are encoded adjacent to scc2 and scc3, respectively, and have structural similarities with the YopB family of T3S translocators. Either Scc2 or Scc3 coprecipitates with CopB from C. trachomatis extracts. Expression of CopB or CopB2 in Yersinia resulted in their type III-dependent secretion, and localization studies with C. trachomatis-infected cells indicated that both were secreted by Chlamydia.  相似文献   

2.
Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD   总被引:6,自引:5,他引:1  
Extracellular Yersinia adhering at the surface of a eukaryotic cell translocate effector Yops across the plasma membrane of the cell by a mechanism requiring YopD and YopB, the latter probably mediating pore formation. We studied the role of SycD, the intrabacterial chaperone of YopD. By producing GST–YopB hybrid proteins and SycD in Escherichia coli , we observed that SycD also binds specifically to YopB and that this binding reduces the toxicity of GST–YopB in E. coli . By analysis of a series of truncated GST–YopB proteins, we observed that SycD does not bind to a discrete segment of YopB. Using the same approach, we observed that YopD can also bind to YopB. Binding between YopB and YopD occurred even in the presence of SycD, and a complex composed of these three proteins could be immunoprecipitated from the cytoplasm of Yersinia . In a sycD mutant, the intracellular pool of YopB and YopD was greatly reduced unless the lcrV gene was also deleted. As LcrV is known to interact with YopB and YopD and to promote their secretion, we speculate that SycD prevents a premature association between YopB–YopD and LcrV.  相似文献   

3.
Non-flagellar type III secretion systems (T3SSs) transport proteins across the bacterial cell and into eukaryotic cells. Targeting of proteins into host cells requires a dedicated translocation apparatus. Efficient secretion of the translocator proteins that make up this apparatus depends on molecular chaperones. Chaperones of the translocators (also called class-II chaperones) are characterized by the possession of three tandem tetratricopeptide repeats (TPRs). We wished to dissect the relations between chaperone structure and function and to validate a structural model using site-directed mutagenesis. Drawing on a number of experimental approaches and focusing on LcrH, a class-II chaperone from the Yersinia Ysc-Yop T3SS, we examined the contributions of different residues, residue classes and regions of the protein to chaperone stability, chaperone-substrate binding, substrate stability and secretion and regulation of Yop protein synthesis. We confirmed the expected role of the conserved canonical residues from the TPRs to chaperone stability and function. Eleven mutations specifically abrogated YopB binding or secretion while three mutations led to a specific loss of YopD secretion. These are the first mutations described for any class-II chaperone that allow interactions with one translocator to be dissociated from interactions with the other. Strikingly, all mutations affecting the interaction with YopB mapped to residues with side chains projecting from the inner, concave surface of the modelled TPR structure, defining a YopB interaction site. Conversely, all mutations preventing YopD secretion affect residues that lie on the outer, convex surface of the triple-TPR cluster in our model, suggesting that this region of the molecule represents a distinct interaction site for YopD. Intriguingly, one of the LcrH double mutants, Y40A/F44A, was able to maintain stable substrates inside bacteria, but unable to secrete them, suggesting that these two residues might influence delivery of substrates to the secretion apparatus.  相似文献   

4.
Yersinia pestis, a human and animal pathogen, uses the type III secretion system (T3SS) for delivering virulence factors and effectors into the host cells. The system is conserved in animal pathogens and is hypothesized to deliver the virulence factors directly from bacterial to mammalian cells through a pore composed of YopB and YopD translocation proteins. The YopB and YopD translocator proteins must be delivered first to form a functional pore in the mammalian cell. The criteria by which Yersinia selects the two proteins for initial delivery are not known and we hypothesized that the extensive binding by the chaperone and partial unfolding of the unbound region may be the criteria for selection. The YopB and YopD translocator proteins, unlike other effectors, have a common chaperone SycD, which binds through multiple regions. Due to the small size of the pore, we hypothesized that many of the transported virulence factors, translocators YopB and YopD included, are delivered in a partially unfolded state stabilized by binding to specific chaperones. The YopD protein binds the chaperone through amino acid (a.a.) 53-149 and a.a. 278-292 regions but biophysical characterization of YopD has not been possible due to the lack of an expression system for soluble, large fragments of the protein. In our present work, we demonstrated that the YopD 150-287 peptide fragment, almost the full soluble C-terminal part, including the non-interacting peptide fragment YopD 150-277, was partially unfolded in its native state by a combination of biophysical methods: circular dichroism, quasi-elastic light scattering, chemical unfolding and 8-anilino-1-naphthalene sulfonate (ANS) binding. The secondary structure of the peptide converted easily between alpha-helical and random coil states at neutral pH, and the alpha-helical state was almost fully recovered by lowering the temperature to 263 K. The current results suggest that YopD 150-287 peptide may have the postulated transport-competent state in its native form.  相似文献   

5.
Yersinia species pathogenic to human benefit from a protein transport machinery, a type three secretion system (T3SS), which enables the bacteria to inject effector proteins into host cells. Several of the transport substrates of the Yersinia T3SS, called Yops (Yersinia outer proteins), are assisted by specific chaperones (Syc for specific Yop chaperone) prior to transport. Yersinia enterocolitica SycD (LcrH in Yersinia pestis and Yersinia pseudotuberculosis) is a chaperone dedicated to the assistance of the translocator proteins YopB and YopD, which are assumed to form a pore in the host cell membrane. In an attempt to make SycD amenable to structural investigations we recombinantly expressed SycD with a hexahistidine tag in Escherichia coli. Combining immobilized nickel affinity chromatography and gel filtration we obtained purified SycD with an exceptional yield of 120mg per liter of culture and homogeneity above 95%. Analytical gel filtration and cross-linking experiments revealed the formation of homodimers in solution. Secondary structure analysis based on circular dichroism suggests that SycD is mainly composed of alpha-helical elements. To prove functionality of purified SycD previously suggested interactions of SycD with Yop secretion protein M2 (YscM2), and low calcium response protein V (LcrV), respectively, were reinvestigated.  相似文献   

6.
Yersinia enterocolitica employs a type three secretion system (T3SS) to translocate immunosuppressive effector proteins into host cells. To this end, the T3SS assembles a translocon/pore complex composed of the translocator proteins YopB and YopD in host cell membranes serving as an entry port for the effectors. The translocon is formed in a Yersinia-containing pre-phagosomal compartment that is connected to the extracellular space. As the phagosome matures, the translocon and the membrane damage it causes are recognized by the cell-autonomous immune system. We infected cells in the presence of fluorophore-labeled ALFA-tag-binding nanobodies with a Y. enterocolitica strain expressing YopD labeled with an ALFA-tag. Thereby we could record the integration of YopD into translocons and its intracellular fate in living host cells. YopD was integrated into translocons around 2 min after uptake of the bacteria into a phosphatidylinositol-4,5-bisphosphate enriched pre-phagosomal compartment and remained there for 27 min on average. Damaging of the phagosomal membrane as visualized with recruitment of GFP-tagged galectin-3 occurred in the mean around 14 min after translocon formation. Shortly after recruitment of galectin-3, guanylate-binding protein 1 (GBP-1) was recruited to phagosomes, which was accompanied by a decrease in the signal intensity of translocons, suggesting their degradation or disassembly. In sum, we were able for the first time to film the spatiotemporal dynamics of Yersinia T3SS translocon formation and degradation and its sensing by components of the cell-autonomous immune system.  相似文献   

7.
Pathogenic Yersinia sp. utilise a common type III secretion system to translocate several anti-host Yop effectors into the cytosol of target eukaryotic cells. The secreted YopB and YopD translocator proteins are essential for this process, forming pores in biological membranes through which the effectors are thought to gain access to the cell interior. The non-secreted cognate chaperone, LcrH, also plays an important role by ensuring pre-secretory stabilisation and efficient secretion of YopB and YopD. This suggests that LcrH-regulated secretion of the translocators could be used by Yersinia to control effector translocation levels. We collected several LcrH mutants impaired in chaperone activity. These poorly bound, stabilised and/or secreted YopB and YopD in vitro. However, these mutants generally maintained stable substrates during a HeLa cell infection and these infected cells were intoxicated by translocated effectors. Surprisingly, this occurred in the absence of detectable YopB- and YopD-dependent pores in eukaryotic membranes. A functional type III translocon must therefore only require minuscule amounts of secreted translocator proteins. Based on these observations, LcrH dependent control of translocation via regulated YopB and YopD secretion would need to be exquisitely tight.  相似文献   

8.
YopD-like translocator proteins encoded by several Gram-negative bacteria are important for type III secretion-dependent delivery of anti-host effectors into eukaryotic cells. This probably depends on their ability to form pores in the infected cell plasma membrane, through which effectors may gain access to the cell interior. In addition, Yersinia YopD is a negative regulator essential for the control of effector synthesis and secretion. As a prerequisite for this functional duality, YopD may need to establish molecular interactions with other key T3S components. A putative coiled-coil domain and an α-helical amphipathic domain, both situated in the YopD C terminus, may represent key protein-protein interaction domains. Therefore, residues within the YopD C terminus were systematically mutagenized. All 68 mutant bacteria were first screened in a variety of assays designed to identify individual residues essential for YopD function, possibly by providing the interaction interface for the docking of other T3S proteins. Mirroring the effect of a full-length yopD gene deletion, five mutant bacteria were defective for both yop regulatory control and effector delivery. Interestingly, all mutations clustered to hydrophobic amino acids of the amphipathic domain. Also situated within this domain, two additional mutants rendered YopD primarily defective in the control of Yop synthesis and secretion. Significantly, protein-protein interaction studies revealed that functionally compromised YopD variants were also defective in self-oligomerization and in the ability to engage another translocator protein, LcrV. Thus, the YopD amphipathic domain facilitates the formation of YopD/YopD and YopD/LcrV interactions, two critical events in the type III secretion process.  相似文献   

9.
Yersinia pestis produces a set of virulence proteins (Yops and LcrV) that are expressed at high levels and secreted by a type III secretion system (Ysc) upon bacterium-host cell contact, and four of the Yops are vectorially translocated into eukaryotic cells. YopD, YopB, and YopK are required for the translocation process. In vitro, induction and secretion occur at 37°C in the absence of calcium. LcrH (also called SycD), a protein required for the stability and secretion of YopD, had initially been identified as a negative regulator of Yop expression. In this study, we constructed a yopD mutation in both wild-type and secretion-defective (ysc) Y. pestis to determine if the lcrH phenotype could be attributed to the decreased stability of YopD. These mutants were constitutively induced for expression of Yops and LcrV, despite the presence of the secreted negative regulator LcrQ, demonstrating that YopD is involved in negative regulation, regardless of a functioning Ysc system. Normally, secretion of Yops and LcrV is blocked in the presence of calcium. The single yopD mutant was not completely effective in blocking secretion: LcrV was secreted equally well in the presence and absence of calcium, while there was partial secretion of Yops in the presence of calcium. YopD is probably not rate limiting for negative regulation, as increasing levels of YopD did not result in decreased Yop expression. Overexpression of LcrQ in the yopD mutant had no significant effect on Yop expression, whereas increased levels of LcrQ in the parent resulted in decreased levels of Yops. These results indicate that LcrQ requires YopD to function as a negative regulator.  相似文献   

10.
11.
Type III secretion systems (T3SSs) secrete needle components, pore-forming translocators, and the translocated effectors. In part, effector recognition by a T3SS involves their N-terminal amino acids and their 5' mRNA. To investigate whether similar molecular constraints influence translocator secretion, we scrutinized this region within YopD from Yersinia pseudotuberculosis. Mutations in the 5' end of yopD that resulted in specific disruption of the mRNA sequence did not affect YopD secretion. On the other hand, a few mutations affecting the protein sequence reduced secretion. Translational reporter fusions identified the first five codons as a minimal N-terminal secretion signal and also indicated that the YopD N terminus might be important for yopD translation control. Hybrid proteins in which the N terminus of YopD was exchanged with the equivalent region of the YopE effector or the YopB translocator were also constructed. While the in vitro secretion profile was unaltered, these modified bacteria were all compromised with respect to T3SS activity in the presence of immune cells. Thus, the YopD N terminus does harbor a secretion signal that may also incorporate mechanisms of yopD translation control. This signal tolerates a high degree of variation while still maintaining secretion competence suggestive of inherent structural peculiarities that make it distinct from secretion signals of other T3SS substrates.  相似文献   

12.
Type III secretion systems rely on hydrophobic translocator proteins that form a pore in the host cell membrane to deliver effector proteins into targeted host cells. These translocator proteins are stabilized in the cytoplasm and targeted for export with the help of specific chaperone proteins. In Pseudomonas aeruginosa, the chaperone of the pore-forming translocator proteins is PcrH. Although all translocator chaperones dimerize, the location of the dimerization interface is in dispute. Moreover, it has been reported that interfering with dimerization interferes with chaperone function. However, binding of P. aeruginosa chaperone PcrH to its cognate secretion substrate, PopD, results in dissociation of the PcrH dimer in vitro, arguing that dimerization of PcrH is likely not important for substrate binding or targeting translocators for export. We demonstrate that PcrH dimerization occurs in vivo in P. aeruginosa and used a genetic screen to identify a dimerization mutant of PcrH. The mutant protein is fully functional in that it can both stabilize PopB and PopD in the cytoplasm and promote their export via the type III secretion system. The location of the mutation suggests that the dimerization interface of PcrH mirrors that of the Yersinia homolog SycD and not the dimerization interface that had previously been reported for PcrH based on crystallographic evidence. Finally, we present data that the dimerization mutant of PcrH is less stable than the wild-type protein in P. aeruginosa, suggesting that the function of dimerization is stabilization of PcrH in the absence of its cognate cargo.  相似文献   

13.
Type III secretion enables bacteria to intoxicate eukaryotic cells with anti‐host effectors. A class of secreted cargo are the two hydrophobic translocators that form a translocon pore in the host cell plasma membrane through which the translocated effectors may gain cellular entry. In pathogenic Yersinia, YopB and YopD shape this translocon pore. Here, four in cis yopD mutations were constructed to disrupt a predicted α‐helix motif at the C‐terminus. Mutants YopDI262P and YopDK267P poorly localized Yop effectors into target eukaryotic cells and failed to resist uptake and killing by immune cells. These defects were due to deficiencies in host‐membrane insertion of the YopD–YopB translocon. Mutants YopDA263P and YopDA270P had no measurable in vitro translocation defect, even though they formed smaller translocon pores in erythrocyte membranes. Despite this, all four mutants were attenuated in a mouse infection model. Hence, YopD variants have been generated that can spawn translocons capable of targeting effectors in vitro, yet were bereft of any lethal effect in vivo. Therefore, Yop translocators may possess other in vivo functions that extend beyond being a portal for effector delivery into host cells.  相似文献   

14.
The type III secretion systems are contact-activated secretion systems that allow bacteria to inject effector proteins across eukaryotic cell membranes. The secretion apparatus, called injectisome or needle complex, includes a needle that terminates with a tip structure. The injectisome exports its own distal components, like the needle subunit and the needle tip. Upon contact, it exports two hydrophobic proteins called translocators (YopB and YopD in Yersinia enterocolitica) and the effectors. The translocators, assisted by the needle tip, form a pore in the target cell membrane, but the structure of this pore remains elusive. Here, we purified the membranes from infected sheep erythrocytes, and we show that they contain integrated and not simply adherent YopB and YopD. In blue native PAGE, these proteins appeared as a multimeric 500- to 700-kDa complex. This heteropolymeric YopBD complex could be copurified after solubilization in 0.5% dodecyl maltoside but not visualized in the electron microscope. We speculate that this complex may not be stable and rigid but only transient.  相似文献   

15.
16.
Type III secretion (T3S) systems allow the export and translocation of bacterial effectors into the host cell cytoplasm. Secretion is accomplished by an 80-nm-long needle-like structure composed, in Pseudomonas aeruginosa, of the polymerized form of a 7-kDa protein, PscF. Two proteins, PscG and PscE, stabilize PscF within the bacterial cell before its export and polymerization. In this work we screened the 1,320-Å2 interface between the two chaperones, PscE and PscG, by site-directed mutagenesis and determined hot spot regions that are important for T3S function in vivo and complex formation in vitro. Three amino acids in PscE and five amino acids in PscG, found to be relevant for complex formation, map to the central part of the interacting surface. Stability assays on selected mutants performed both in vitro on purified PscE-PscG complexes and in vivo on P. aeruginosa revealed that PscE is a cochaperone that is essential for the stability of the main chaperone, PscG. Notably, when overexpressed from a bicistronic construct, PscG and PscF compensate for the absence of PscE in cytotoxic P. aeruginosa. These results show that all of the information needed for needle protein stabilization and folding, its presentation to the T3 secreton, and its export is present within the sequence of the PscG chaperone.Many Gram-negative bacteria are endowed with a specialized secretion machinery called the type III secretion (T3S) system (T3SS) that allows a set of bacterial proteins (effectors) to be injected directly into a eukaryotic cell cytoplasm. The effectors carry versatile enzymatic activities and target the main host defense functions, such as phagocytosis (14, 19). The T3S nanomachinery is composed of three main subassemblies: the basal body, the needle, and the translocon (5, 15). The basal body, which is in composition and structure similar to a flagellum base, is embedded within two bacterial membranes and is composed of several protein rings made up of identical subunits with 12-fold symmetry (20, 33). Protruding from the surface and in continuum with the base, the needle is formed by a low-molecular-weight protein that polymerizes into a 50- to 80-nm-long and 8-nm-wide structure whose length is highly regulated (22, 24, 27). It is widely accepted that the secretion of effectors takes place through this 2-nm-wide needle channel and is continued through a three-protein pore complex called the translocon. In related T3S systems of pathogens Pseudomonas aeruginosa and Yersinia spp., the translocon is composed of one hydrophilic (PcrV and LcrV in Pseudomonas and Yersinia, respectively) and two hydrophobic (PopB/PopD and YopB/YopD, respectively) proteins, which allow crossing of the host plasma membrane (16, 18, 25).A highlight of the T3S systems is a class of intrabacterial helper proteins, called chaperones, which are proposed to participate in several steps of substrate stabilization and export. The sequence identity between chaperones is notably low, but they possess common features such as small size (100 to 150 residues) and a tendency toward an acidic pI (26). T3S chaperones have been classified into three categories according to their partners and their modes of interaction. Class I chaperones act as dimers and bind one (class IA) or several (class IB) effectors. Crystal structures of several class IA and IB molecules show that they share a similar 5β/3α fold, the central α helix being responsible for dimerization (3, 34). They act mainly as “bodyguards” preventing their substrates from generating premature or nonspecific interactions with other proteins but are also thought to play a role in secretion. The class II chaperones bind to hydrophobic translocators and keep them in a soluble state (13, 31). SycD of Yersinia binds YopB and YopD translocators, while PcrH from Pseudomonas is responsible for recognition of PopB and PopD (4, 9, 13, 21). These chaperones display all-helical structures with three tetratricopeptide repeat (TPR) motifs, with a single TPR module being composed of two antiparallel α helices; the overall structure forms a concave substrate-binding groove (4, 21, 23).The third class consists of chaperones interacting with needle proteins. Until now, they have been documented only in the Ysc/Psc subclass of T3SSs (29, 35, 36). We have previously demonstrated that in P. aeruginosa, an opportunistic pathogen, the type III needle component PscF is maintained in its monomeric form within the bacterial cytoplasm by a bimolecular chaperone, PscE-PscG (29, 30). The 2-Å crystal structure of the ternary complex revealed that PscE is a 67-amino-acid protein which folds into three α helices (Ha, Hb, and Hc) and interacts directly only with PscG. PscG is composed of seven α helices (H1 to H7) organized into a TPR-like domain harboring a concave region which binds to the C-terminal helix of PscF (30). The interacting surface between PscG and PscF is essential for needle formation and bacterial cytotoxicity (30).In this work, we investigate the role of two chaperones in needle protein stabilization and T3S function. We define interaction hot spots of the PscE-PscG surface by site-directed mutagenesis and then show that PscE is required for stabilization of PscG both in vivo and in vitro. Moreover, we show that when PscG is overproduced in concert with PscF in P. aeruginosa, the absence of PscE does not affect T3S functionality. These data demonstrate that PscG is the main needle chaperone, being sufficient to maintain PscF in a secretion-prone fold, and that PscE is a cochaperone needed to ensure stability of PscG.  相似文献   

17.
Yersinia adhering at the surface of eukaryotic cells secrete a set of proteins called Yops. This secretion which occurs via a type III secretion pathway is immediately followed by the injection of some Yops into the cytosol of eukaryotic cells. Translocation of YopE and YopH across the eukaryotic cell membranes requires the presence of the translocators YopB and YopD. YopE and YopH are modular proteins composed of an N-terminal secretion signal, an internalization domain, and an effector domain. Secretion of YopE and YopH requires the presence of the specific cytosolic chaperones SycE and SycH, respectively. In this work, we have mapped the regions of YopE and YopH that are involved in binding of their cognate chaperone. There is only one Syc-binding domain in YopE (residues 15–50) and YopH (residues 20–70). This domain is localized immediately after the secretion signal and it corresponds to the internalization domain. Removal of this bifunctional domain did not affect secretion of YopE and YopH and even suppressed the need for the chaperone in the secretion process. Thus SycE and SycH are not secretion pilots. Instead, we propose that they prevent intrabacterial interaction of YopE and YopH with proteins involved in translocation of these Yops across eukaryotic cell membranes.  相似文献   

18.
Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.  相似文献   

19.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen of humans that uses a type III secretion (T3S) system to manipulate host cells through the delivery of effector proteins into their cytosol and membranes. The function of T3S systems depends on small bacterial cytosolic chaperone-like proteins, which bind T3S substrates and ensure their appropriate secretion. To find novel T3S chaperone-substrate complexes of C. trachomatis we first searched its genome for genes encoding proteins with features of T3S chaperones. We then systematically tested for interactions between candidate chaperones and chlamydial T3S substrates by bacterial two-hybrid. This revealed interactions between Slc1 (a known T3S chaperone) or CT584 and several T3S substrates. Co-immunoprecipation after protein expression in Yersinia enterocolitica and protein overlay binding assays indicated that Slc1 interacted with the N-terminal region of the known T3S substrates Tarp (a previously described substrate of Slc1), CT694, and CT695, and that CT584 interacted with a central region of CT082, which we identified as a C. trachomatis T3S substrate using Y. enterocolitica as a heterologous system. Further T3S assays in Yersinia indicated that Slc1 or CT584 increased the amount of secreted Tarp, CT694, and CT695, or CT082, respectively. Expression of CT584 increased the intra-bacterial stability of CT082, while Slc1 did not affect the stability of its substrates. Overall, this indicated that in C. trachomatis Slc1 is a chaperone of multiple T3S substrates and that CT584 is a chaperone of the newly identified T3S substrate CT082.  相似文献   

20.
Gram-negative bacteria use type III machines to inject toxic proteins into the cytosol of eukaryotic cells. Pathogenic Yersinia species export 14 Yop proteins by the type III pathway and some of these, named effector Yops, are targeted into macrophages, thereby preventing phagocytosis and allowing bacterial replication within lymphoid tissues. Hitherto, YopB/YopD were thought to insert into the plasma membrane of macrophages and to promote the import of effector Yops into the eukaryotic cytosol. We show here that the type III machines of yersiniae secrete three proteins into the extracellular milieu (YopB, YopD and YopR). Although intrabacterial YopD is required for the injection of toxins into eukaryotic cells, secreted YopB, YopD and YopR are dispensable for this process. Nevertheless, YopB, YopD and YopR are essential for the establishment of Yersinia infections in a mouse model system, suggesting that type III secretion machines function to deliver virulence factors into the extracellular milieu also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号