首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the goal of developing a defined medium for the production of desiccation-tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus, we evaluated the impact of various media components such as amino acids, carbohydrates, trace metals and vitamins on hyphal growth and sporulation of P. fumosoroseus cultures and on the freeze-drying tolerance of blastospores produced under these conditions. A comparison of 13 amino acids as sole nitrogen sources showed that glutamate, aspartate, glycine and arginine supported biomass accumulations (12–16 mg ml−1) and blastospore yields (6–11 × 108 blastospores ml−1) comparable to our standard production medium which contains casamino acids as the nitrogen source. Using glutamate as the sole nitrogen source, tests with various carbohydrates showed that P. fumosoroseus grew best on glucose (18.8 mg biomass ml−1) but produced similar blastospore concentrations (7.3–11.0 × 108) when grown with glucose, glycerol, fructose or sucrose. P. fumosoroseus cultures grown in media with sodium citrate or galactose as the sole carbohydrate produced lower blastospore concentrations but more-desiccation-tolerant spores. Zinc was the only trace metal tested that was required for optimal growth and sporulation. In a defined medium with glutamate as the nitrogen source, vitamins were unnecessary for P. fumosoroseus growth or sporulation. When blastospores were freeze-dried in the absence of a suspension medium, residual glucose (>2.5% w/v) was required for enhanced spore survival. Thus, a defined medium containing basal salts, glucose, glutamate and zinc can be used to produce optimal concentrations of desiccation-tolerant blastospores of P. fumosoroseus. Received 27 October 1998/ Accepted in revised form 06 May 1999  相似文献   

2.
The impact of growing cultures of Paecilomyces fumosoroseus in liquid media containing four combinations of glucose and casamino acids (8 g l–1 or 80 g l–1 glucose, 1.32 g l–1 or 13.2 g l–1 casamino acids) was evaluated, based on blastospore production, germination rate, viability after freeze-drying and short-term storage stability. When blastospores were produced using a high casamino acid concentration, blastospore yields and germination rates were significantly higher (13.2–18.5×107 blastospores ml–1, 50–60% germination after 4 h), compared to cultures grown in media containing lower casamino acid concentrations (0.4–2.3×107 blastospores ml–1, 10–20% germination after 4 h). Chemical analyses of blastospore composition showed that accelerated blastospore germination may be related to increased proteinaceous reserves rather than to glycogen or lipid accumulation. Tolerance to freeze-drying by blastospores suspended in spent medium was enhanced by a high initial casamino acid concentration in the culture medium (75% survival) and by the residual glucose concentrations in the spent medium. Under the conditions of this study, the storage stability of blastospores of P. fumosoroseus was unaffected by the nutritional condition in which they were produced.  相似文献   

3.
Formulation matrices can play an important role in improving the storage survival and biocontrol efficacy of microorganisms used for the control of pest insects. In this study, liquid culture-produced blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus were formulated with different inert and organic materials prior to air-drying. Paecilomyces fumosoroseus blastospores were produced in two different liquid media, a basal salts medium supplemented with Casamino acids and glucose (LM1) and a medium containing peptone of collagen and glucose (LM2). Blastospores produced in the two test media were formulated with various supports. The formulation supports were cornstarch, rice flour, talc powders, Mexican lime, calcined kaolin clay, and diatomaceous earth. Several of the supports were tested at different concentrations. The initial and long-term (after storage at 4 and 28 °C) survival of the formulated, air-dried blastospores were evaluated. Initial blastospore viabilities were affected by the formulation material and by the blastospore production medium. Medium composition, drying support and storage temperature had an impact on the long-term survival of the blastospores. Under the conditions of the study, LM1 produced higher concentrations of blastospores that not only survived drying better than blastospores produced in LM2 but also maintained viability longer during storage in the formulation supports tested. The nature of the drying supports was shown to have a significant impact on the storage stability of all blastospores, particularly those produced in LM1. Under the production, drying and storage conditions used in the study, calcined kaolin clay formulations stored at 4 °C had the best storage stability. In all formulations tested, spore survival over time was reduced for blastospore formulations stored at 28 °C rather than 4 °C.  相似文献   

4.
Spore yields were measured for various fungal entomopathogens grown in six nutritionally different liquid media with low and high carbon concentrations (8 and 36 g l–1, respectively) at carbon-to-nitrogen (C:N) ratios of 10:1, 30:1 and 50:1. Six fungi were tested: two Beauveria bassiana strains, three Paecilomyces fumosoroseus strains and one Metarhizium anisopliae strain. Spore yields were examined after 2, 4 or 7 days growth. In general, highest spore yields were obtained in media containing 36 g/l and a C:N ratio of 10:1. After 4 days growth, highest spore yields were measured in the three Paecilomyces isolates (6.9–9.7 × 108 spores ml–1). Spore production by the B. bassiana isolates was variable with one isolate producing high spore yields (12.2 × 108 spores ml–1) after 7 days growth. The M. anisopliae isolate produced low spore concentrations under all conditions tested. Using a commercial production protocol, a comparison of spore yields for the coffee berry borer P. fumosoroseus and a commercial B. bassiana isolate showed that highest spore concentrations (7.2 × 108 spores ml–1) were obtained with the P. fumosoroseus isolate 2-days post-inoculation. The ability of the P. fumosoroseus strain isolated from the coffee berry borer to rapidly produce high concentrations of spores prompted further testing to determine the desiccation tolerance of these spores. Desiccation studies showed that ca. 80% of the liquid culture produced P. fumosoroseus spores survived the air-drying process. The virulence of freshly produced, air-dried and freeze-dried coffee berry borer P. fumosoroseus blastospores preparations were tested against silverleaf whiteflies (Bemisia argentifolii). While all preparations infected and killed B. argentifolii, fresh and air-dried preparations were significantly more effective. These results suggest that screening potential fungal biopesticides for amenability to liquid culture spore production can aid in the identification of commercially viable isolates. In this study, P. fumosoroseus was shown to possess the production and stabilization attributes required for commercial development.  相似文献   

5.
Blastospores are yeast-like cells produced by entomopathogenic fungi that are infective to arthropods. The economical feasible production of blastospores of the insect killing fungus Metarhizium spp. must be optimized to increase yields. Moreover, stabilization process is imperative for blastospore formulation as a final product. In this sense, our goal was to increase blastospore production of two Metarhizium isolates (ESALQ1426 and ESALQ4676) in submerged liquid cultures. A modified Adamek's medium was supplemented with increased glucose concentrations and the fermentation time was accelerated by using a blastospore pre-culture as inoculum. Virulence of air-dried stable blastospores was compared with conidia toward larvae of the cattle tick, Rhipicephalus microplus. Our results revealed that blastospore production of Metarhizium is isolate- and species-dependent. Glucose-enriched cultures (140 g glucose/L) inoculated with pre-cultures improved yields with optimal growth conditions attained for Metarhizium robertsii ESALQ1426 that rendered as high as 5.9 × 108 blastospores/mL within 2 d. Resultant air-dried blastospores of ESALQ1426 were firstly proved to infect and quickly kill cattle tick larvae with comparable efficiency to conidia. Altogether, we argue that both osmotic pressure, induced by high glucose titers, and isolate selection are critical to produce high yields of blastospores that hold promise to control cattle-tick larvae.  相似文献   

6.
Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.  相似文献   

7.
In shake flask and fermentor studies, various media components and culture inocula were tested to improve P. fumosoroseus spore production rates, yield and stability. To evaluate inoculum potential and inoculum scale-up for fermentor studies, conidia and liquid culture-produced spores of various strains of P. fumosoroseus were compared as inoculum. Inoculation of liquid cultures with blastospores at concentrations of at least 1×106 spores mL-1 resulted in the rapid production of high concentrations of blastospores (∼1×109 spores mL-1, 48 h fermentation time) for all strains tested. The rapid germination rate of blastospores (90% after 6 h incubation) compared to conidia (>90% after 16 h incubation) and the use of higher inoculum rates reduced the fermentation time from 96 to 48 h for maximal spore yields. A comparison of various complex nitrogen sources showed that liquid media supplemented with acid hydrolyzed casein or yeast extract supported the production of high concentrations of blastospores that were significantly more desiccation-tolerant (79-82% survival after drying) when compared to blastospores produced in media supplemented with other nitrogen sources (12-50% survival after drying). For rapid spore production, requirements for trace metals and vitamin supplementation were dependent on the type of hydrolyzed casein used in the medium. Fermentor studies with two strains of P. fumosoroseus showed that high concentrations (1.3-1.8×109 spores mL-1) of desiccation-tolerant blastospores could be produced in 48-h fermentations. These studies have demonstrated that the infective spores of various strains of the fungal bioinsecticide Paecilomyces fumosoroseus can be rapidly produced using deep-tank, liquid culture fermentation techniques.  相似文献   

8.
The entomopathogenic fungus Isaria fumosorosea is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. Using 250-mL baffled flasks, culture volumes of 50, 100, 150, and 200 mL were grown in a shaker incubator at 350 rpm and 28°C. Dissolved oxygen (DO) was continuously monitored using a non-invasive oxygen monitoring system. Culture volumes of 50 mL maintained DO concentrations above 10% throughout the 3-day growth period and accumulated biomass and produced blastospores more rapidly (1.2×109 blastospores mL?1 in 2 days) than the other culture volumes tested. Dissolved oxygen was depleted in culture volumes of 100, 150, and 200 mL after 20.5, 16.8, and 13.5 h, respectively. The DO in 150 and 200 mL cultures remained exhausted (<3%) throughout the growth period resulting in significantly lower blastospore yields and increased hyphal growth. These results were used to establish oxygen levels (>20% DO) for I. fumosorosea growth in 100-L bioreactors resulting in blastospore production (1.1×109 blastospores mL?1 in 2 days) comparable to highly aerated, low volume shake flask cultures. In addition, maintaining higher DO levels resulted in increased blastospore production by cultures of I. fumosorosea grown on low-cost nitrogen sources (cottonseed meal and soy flour) that previously elicited excessive hyphal growth. These studies showed that oxygen availability is essential for significant yeast-like growth by I. fumosorosea cultures and that continuous monitoring of oxygen concentrations in shake flask cultures can be used to establish aeration conditions for bioreactors.  相似文献   

9.
Using a sequential approach, we described efficient blastospore production in a stirred tank bioreactor (3?L capacity). We used the response surface methodology to optimise the media ingredients and fermentation parameters to obtain the maximum production of blastospores by a locally collected isolate of Metarhizium acridum (Ascomycota: Hypocreales). The results showed that a liquid culture medium supplemented with monopotassium phosphate (15.17?g/L), corn steep liquor (69.25?g/L), and casamino acids (80.68?g/L) in a stirred tank bioreactor under operating conditions constant at 635?rpm, a temperature of 26°C, and pH 3.3 produced 1.25?×?108?blastospores (bls)/ml, with 93% viability after 120?h of fermentation. This bioreactor yield compares favourably with the yields obtained by shake flask production and confirms the suitability of the media and production parameters for the potential scale-up fermentation production of M. acridum.  相似文献   

10.
Studies on blastospore production in different liquid media were conducted with three strains of Metarhizium anisopliae var. anisopliae (M. a.) derived from various countries (M. a. 43: Austria, M. a. 57: Brazil, M. a. 97: Philippines). Variation of six fermentation parameters (cornsteep products, carbohydrates, pH values, temperature, Tween 80, and polyethyleneglycol (PEG) 200) disclosed that the three strains of M. anisopliae differed in their growth pattern and physiology. In standard medium and in all tests, M. a. 57 produced the highest number of blastospores invariably amounting to > 108 per ml, while mycelial pellets were never formed. The preferred carbohydrates were glucose and fructose. Blastospore production of M. a. 43 was increased by growth at 30°C, at pH 6.5 or by addition of 5% PEG 200. However, it was impaired by different concentrations of Tween 80 or higher concentrations of PEG 200 (10–15%). M. a. 97 produced most blastospores at 30°C, and the strain preferred basic (pH 8.0) as well as acid (pH 4.5) media. Blastospore production was increased by the addition of 5% PEG 200 or 0.4–1.2% Tween 80. Moreover, PEG 200 suppressed pellet formation effectively. Altogether, our results showed that for optimal blastospore production of Metarhizium anisopliae, suitable strain‐specific parameters have to be evaluated.  相似文献   

11.
提高虫生真菌孢子应对热胁迫的能力是生防菌应用研究的关键,为研究菌丝培养阶段碳源对玫烟色虫草Cordyceps fumosorosea IF-1106耐热性的影响,选择了麦芽糖、可溶性淀粉、蔗糖、葡萄糖、果糖、海藻糖为碳源的培养基对玫烟色虫草IF-1106进行液体培养,评估了不同碳源条件下菌丝的生长、产孢及所产芽生孢子的耐热性。结果表明,在菌株培养阶段,培养基中碳源的种类及浓度对菌丝产量、产孢量及所产芽生孢子的耐热性有显著影响,其中蔗糖为碳源时,所产芽生孢子的耐热性强,45 ℃热胁迫条件下LT50为1.65 h;蔗糖浓度为40 g/L时,可产生大量耐热芽生孢子,液体培养3 d后产孢量可达3.43×107个孢子/mL。为探索不同培养条件下所产芽生孢子耐热性不同的原因,提取了孢子内的海藻糖并采用离子色谱法对其进行了定量分析,发现耐热性高的芽生孢子胞内海藻糖含量普遍较低,可见海藻糖是与芽生孢子耐热性密切相关的内源物质。综上所述,选择适宜的培养基是调控孢子耐热性的有效途径,本研究为生产高耐热的玫烟色虫草生防制剂提供了有益的指导。  相似文献   

12.
Kocharin K  Wongsa P 《Mycopathologia》2006,161(4):255-260
Cordyceps unilateralis is a fastidious fungal pathogen affecting ants. Up to now, only the complex and expensive Grace’s insect cell culture medium has been used for in vitro cultivation (as blastospores and mycelium) of this fungus. To obtain an inexpensive and less complicated medium, the effects of carbon and nitrogen sources, salt solution and carbon-to-nitrogen (C:N) ratio on the growth of this fungus were examined. Glucose was the most important factor for blastospore formation, and yeast extract could be used as a nitrogen source for blastospore formation and mycelial growth. A suitable C:N ratio (glucose: yeast extract) was 33.3:1. As a result, a new semi-defined medium was achieved, composed of 26.68 g L−1 glucose, 3.3 g L−1 yeast extract and salt solution. This medium supported blastospore formation and mycelial growth of all tested C. unilateralis isolates.  相似文献   

13.
Microsclerotia (MS), overwintering structures produced by many plant pathogenic fungi, have not been described for Metarhizium anisopliae. Three strains of M. anisopliae – F52, TM109, and MA1200 – formed MS in shake flask cultures using media with varying carbon concentrations and carbon-to-nitrogen (C:N) ratios. Under the conditions of this study, all strains produced MS, compact hyphal aggregates that become pigmented with culture age, in addition to more typical blastospores and mycelia. While all strains formed desiccation tolerant MS, highest concentrations (2.7–2.9 × 108 L−1 liquid medium) were produced in rich media with C:N ratios of 30:1 and 50:1 by strain F52. All three strains of M. anisopliae produced similar biomass concentrations when media and growth time were compared. Strain MA1200 produced higher concentrations of blastospores than the other two strains of M. anisopliae with highest blastospore concentrations (1.6 and 4.2 × 108 blastospores ml−1 on days 4 and 8, respectively) in media with the highest carbon and nitrogen concentrations. Microsclerotial preparations of M. anisopliae containing diatomaceous earth survived air-drying (to <5 % moisture) with no significant loss in viability. Rehydration and incubation of air-dried MS granules on water agar plates resulted in hyphal germination and sporogenic germination to produce high concentrations of conidia. Bioassays using soil-incorporated, air-dried MS preparations resulted in significant infection and mortality in larvae of the sugar beet root maggot, Tetanops myopaeformis. This is the first report of the production of sclerotial bodies by M. anisopliae and provides a novel approach for the control of soil-dwelling insects with this entomopathogenic fungus.  相似文献   

14.
Summary Beauveria bassiana in liquid culture can produce blastospores and occasionally submerged conidia. For use as a bioinsecticide, conidia have definite advantages. Numerous studies have investigated conidia production in liquid cultures using synthetic and industrial grade media supplemented with glucose. We have studied growth, development and sporulation in microcultures using growth media containing chitin monomers. For the production of submerged conidia growth media containing N-acetyl-d-glucosamine (GlcNAc) proved to be better than yeast extract-peptone-glucose (YPG), glucose plus ammonium salts (Glc+NH4Cl) or N-acetyl-d-galactosamine (GalNAc). Sixty-one percent of the spores in the GlcNAc medium were submerged conidia with the remainder being blastospores. The concentration of submerged conidia reached 8.0 × 105/ ml after two days in GlcNAc medium as compared to 8.9 × 105/ml in YPG medium. Therefore, in terms of percentage of submerged conidia produced, GlcNAc medium generated more submerged conidia in spite of its lower cell yields. Growth in a medium containing chitin, a polymer of GlcNAc, resulted in 86.3% of the spores as submerged conidia exceeding 106/ml after 48 h. Growth under phosphate limitation resulted in an increased percentage of submerged conidia for all media tested. Electron microscopy and spore protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that structural and compositional differences exist between the spore types.  相似文献   

15.
This study evaluates osmolality of a submerged conidia-producing medium in relation to the following spore characteristics: yield, morphology (dimensions and cell wall structure), chemical properties of cell wall surfaces (charge, hydrophobicity, and lectin binding), cytoplasmic polyols and trehalose, and performance (drying stability and pathogenicity). Spore production was increased by the addition of up to 150 g l?1 polyethylene glycol 200 (PEG). Spores from high osmolality medium (HOM spores) containing 100 g l?1 PEG had thin cell walls and dimensions more similar to blastospores than submerged conidia or aerial conidia. However, a faint electron-dense layer separating primary and secondary HOM spores’ cell walls was discernable by transmission electron microscopy as found in aerial and submerged conidia but not found in blastospores. HOM spores also appeared to have an outer rodlet layer, unlike blastospores, although it was thinner than those observed in submerged conidia. HOM spores’ surfaces possessed hydrophobic microsites, which was further evidence of the presence of a rodlet layer. In addition, HOM spores had concentrations of exposed N-acetyl-β-d-glucosaminyl residues intermediate between blastospores and submerged conidia potentially indicating a masking of underlying cell wall by a rodlet layer. All spore types had exposed α-d-mannosyl and/or α-d-glucosyl residues, but lacked oligosaccharides. Similar to blastospores, HOM spores were less anionic than submerged conida. Although HOM spores had thin cell walls, they were more stable to drying than blastospores and submerged conidia. Relative drying stability did not appear to be the result of differences in polyol or trehalose concentrations, since trehalose concentrations were lower in HOM spores than submerged conidia and polyol concentrations were similar between the two spore types. HOM spores had faster germination rates than submerged conidia, similar to blastospores, and they were more pathogenic to Schistocerca americana than submerged conidia and aerial conidia.  相似文献   

16.
Several entomopathogenic fungi produce toxins that could be used as bioinsecticides in integrated pest management programs. Paecilomyces fumosoroseus is currently used for the biological control of the whiteflies Bemisia tabaci and B. argentifolii. Supernatants from submerged batch culture, where the fungus produced abundant dispersed mycelium, conidia and blastospores, were toxic to the whitefly nymphs. The most abundant metabolite was purified by HPLC and identified by mass spectrometry and NMR as dipicolinic acid. Both the dipicolinic acid produced by the fungus and the chemically synthesized compound had insecticidal activity against third-instar nymphs of the insect. Dipicolinic acid was toxic to the whitefly nymphs in bioassays involving topical applications. In submerged culture, the specific growth rate of P. fumosoroseus was 0.054 h−1, the specific glucose consumption rate was 0.1195 g g−1 h−1 and the specific dipicolinic acid production rate was 0.00012 g g−1 h−1. Dipicolinic acid was detected after 24 h when the fungus started growing; and dipicolinic acid production was directly correlated with fungal growth. Nevertheless, the yield was low and the maximal concentration was only 0.041 g l−1. The maximal concentrations of conidia and blastospores (per milliliter) were 1.4×108 and 7×107, respectively.  相似文献   

17.
Mexican isolates ofPaecilomyces fumosoroseus (Wize) Brown & Smith virulent to nymphs and adults ofBemisia tabaci Gennadius (Homoptera: Aleyrodidae) were screened in terms of spore production in submerged culture. Effects of light, temperature stress and yeast extract on sporulation were studied. Cycles of 12 hours light/12 hours dark increased spore production as well as an incubation for 24 hours at 37°C prior to incubation at 30°C. In absence of organic nitrogen both fungal growth and sporulation were very low. Spore production in fermentors with a culture media of a C:N ratio of 25 was doubled as compared to a media with a C:N ratio of 11. Both conidia and blastospores were produced. Production of conidia directly from blastospores through microcyclic sporulation was observed. The proportion of conidia obtained under optimal conditions was 88.8%. Submerged culture ofP. fumosoroseus seemed advantageous compared to ricefilled plastic bags production method because of shorter fermentation times, higher spore yields and substantially higher volumetric spore productivity. Results indicated that careful manipulation of nutritional and environmental conditions allowed for production of conidia during submerged growth ofP. fumosoroseus, microcyclic sporulation being induced under a set of environmental conditions including temperature stress and nutrients limitation.  相似文献   

18.
Previous studies have demonstrated the efficacy of our Bacillus cereus isolate (NRRL 100132) in reducing concentrations of nitrogenous wastes and inhibiting growth of fish pathogens. In vivo efficacy and tolerance to a range of physiological conditions in systems used to rear Cyprinus carpio make this isolate an excellent candidate for aquaculture applications. Production cost is an important consideration in development of commercially relevant biological products, and this study examines the optimization of nutrient supplementation, which has an impact on high-density production of spores by fermentation. Corn steep liquor (CSL) was identified as a lower cost and more effective nutrient source in comparison to conventional nutrient substrates, in particular yeast extract and nutrient broth. The improved sporulation performance of B. cereus could be related to the increased availability of free amino acids, carbohydrates, and minerals in CSL, which had a positive effect on sporulation efficiency. The impact of nutrient concentration on spore yield and productivity was modeled to develop a tool for optimization of nutrient concentration in fermentation. An excellent fit of the model was confirmed in laboratory fermentation studies. A cost comparison revealed that production using liquid phytase and ultrafiltered-treated CSL was less expensive than spray-dried CSL and supported cultivation of B. cereus spores at densities higher than 1 × 1010 CFU ml−1.  相似文献   

19.
The best culture medium composition for the production of bikaverin by Gibberella fujikuroi in shake-flasks, i.e. 100 g glucose l–1; 1 g NH4Cl l–1; 2 g rice flour l–1; 5 g KH2PO4 l–1 and 2.5 g MgSO4 l–1, was obtained through a fractional factorial design and then scaled-up to a fluidized bioreactor. The effects of carbon and nitrogen concentrations, inoculum size, aeration, flow rate and bead sizes on batch bikaverin production using immobilized G. fujikuroi in a fluidized bioreactor were determined by an orthogonal experimental design. Concentrations of up to 6.83 g bikaverin l–1 were obtained when the medium contained 100 g glucose l–1 and 1 g NH4Cl l–1 with an inoculum ratio of 10% v/v, an aeration rate of 3 volumes of air per volume of medium min–1, and a bead size of 3 mm. Based on dry weight, the bikaverin production was 30–100 times larger than found in submerged culture and approximately three times larger than reported for solid substrate fermentation.  相似文献   

20.
Sporulation in Bacillus megaterium var phosphaticum (PB — 1) was induced using modified nutrient media. This modified medium induced sporulation within 36 h. After spore induction the spores were kept under refrigerated (5°C) and room temperature (32°C) for five months and survival of spores was studied at 15 days intervals by plating them in nutrient agar medium. It was observed that there was not much variation in the storage temperature (5°C & 32°C). The spore cells of Bacillus megaterium var phosphaticum (PB — 1) were observed up to five months of storage under refrigerated (5°C) and room temperature (32°C). Regeneration of spore cells into vegetative cells was studied in tap water, rice gruel, nutrient broth, sterile lignite and sterile water at different concentrations of spore inoculum. The multiplication of sporulated Bacillus megaterium var phosphaticum culture was fast and reached its maximum (29.5 × 108 cfu ml−1) in nutrient broth containing 5 per cent inoculum level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号