首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to better understand the reactions related to fungal treatment of pulp bleaching effluents. Color, COD (chemical oxygen demand), glucose, chloride and ammonium concentration were monitored during the course of treatment of alkali extraction stage liquor (E1) with a white-rot fungus Phanerochaete chrysosporium.The color removal rate was independent on the initial glucose concentration. The earlier used glucose concentration of 10 g l−1 was found to be unnecessary high as the residual glucose accounted for about 50% of the final COD of the effluent. The lowest practical glucose concentration was 2 g l−1. Below this the fungus lost its decolorizing activity in a few days. The lignin-related COD decreased 32% and up to 16.5 mM inorganic chloride was liberated (being 34% increase from the original concentration) from the chlorinated organic material in the effluent in 2 d. The observed rapid depletion of added ammonium nitrogen is believed to indicate a switch of a part of the mycelium to primary growth which leads to higher activity and longer active period of time due to renewal of the cells.  相似文献   

2.
Nitrification and denitrification of synthetic wastewater was studied by using two reactors in series. An activated sludge unit was used for nitrification followed by a downflow biofilter (packed column) for denitrification. A glucose solution was fed to the denitrification column to supply carbon source. Effects of important process variables such as sludge age, hydraulic residence time and feed ammonium concentration on system's performance were investigated. Effluent ammonium-nitrogen (NH4-N) concentration decreased with increasing sludge age and hydraulic residence time and remained constant for sludge age and hydraulic residence times greater than 12 d and 15 h, respectively. Feed ammonium-nitrogen concentration above 200 mg/l resulted in significant levels of NH4-N in the effluent at Šc = 15 d and ŠH = 12 h in nitrification. Performance of denitrification stage was not satisfactory for feed NO3-N concentrations above 150 mg N/l resulting in significant effluent NO3-N levels at hydraulic residence time of ŠH = 6 h.  相似文献   

3.
NADP-glutamate dehydrogenase (NADP-GDH) and NAD-glutamate dehydrogenase (NAD-GDH) activities from Bipolaris maydis race T (ATCC 36180) were determined by measuring the change in absorbance at 340 nm of either reduced NADP or NAD in a reaction mixture of NH4C1, -ketoglutarate and a cell free extract of the fungus. NADP-GDH activity was high at 48 h, but low at 72 and 96 h when the fungus was incubated on a reciprocal shaker at 28 °C in a mineral salts medium containing 2 g/l glucose and 4 g/l Lasparagine. In contrast, in these cultures NAD-GDH activity was low at 48 h, but high at 72 and 96 h. At 72 and 96 h glucose was not detected in the culture medium. In addition, levels of ammonium and pH increased from 0.0 moles/ml and pH 5.8 at 48 h to 10.6 moles/ml and pH 7.2 at 72 h, and to 23.0 moles/ml and pH 8.4 at 96 h. Fungal mycelia were transferred after 48 h of incubation on media containing 2 g/l glucose and 4 g/l L-asparagine to fresh media containing 0, 2 or 5 g/l glucose with and without 4 g/l L-asparagine. Twenty-four h after transfer to fresh media containing 5 g/l glucose with L-asparagine or 2 or 5 g/l glucose without L-asparagine, NADP-GDH activity was high and NAD-GDH activity was low. Glucose was detected in the culture medium, ammonium was not detected and the pH remained unchanged or decreased. In contrast, 24 h after transfer to fresh media with 0 or 2 g/l glucose with L-asparagine and on media lacking glucose or L-asparagine, NADP-GDH activity was low and NAD-GDH activity was high. Glucose was not detected in the culture medium, ammonium levels were high and the pH increased. Thus, accumulation of ammonium and pH increases accompanying depletion of glucose in a L-asparagine medium could be related to a change in the capacity of B. maydis race T to assimilate and produce ammonium via pathways involving glutamate dehydrogenases.  相似文献   

4.
Decolorization of molasses wastewater (MWW) from an ethanolic fermentation plant by Phanerochaete chrysosporium was studied. By diluting MWW properly (10%v/v) and incubating it with an appropriate concentration of the spores (2.5 × 106/ml), extensive decolorization occurred (75%) on day 5 of the incubation. The colour removal ability was found to be correlated to the activity of ligninolytic enzyme system: lignin peroxidase (LiP) activity was 185 U/l while manganese peroxidase (MnP) activity equaled 25 U/l. Effects of some selected operating variables were studied: manganese(II), veratryl alcohol (VA), glucose as a carbon source and urea and ammonium nitrate, each as a source of nitrogen. Results showed that the colour reduction and LiP activity were highest (76% and 186 U/l, respectively) either when no Mn(II) was added or added at the lowest level tested (0.16 mg/l to provide 0.3 mg/l). Activity of MnP was highest (25 U/l) when Mn(II) added to the diluted MWW at the highest level (100 ppm) while activity of LiP was lowest (7.1 U/l) at this level of added Mn(II). The colour reduction in the presence of the added VA was shown to be little less than in its absence (70 vs. 75%). When urea as an organic source of nitrogen for the fungus, was added to the MWW, the decolorizing activity of P. chrysosporium decreased significantly (15 vs. 75%) and no activities were detected for LiP and MnP. Use of ammonium nitrate as an inorganic source of nitrogen did not show such a decelerating effects, although no improvements in the metabolic behavior of the fungus (i.e., LiP and MnP activities) deaccelerating was observed. Effects of addition of glucose was also discussed.  相似文献   

5.
Effect of various parameters such as size of inoculum, temperature, carbon source on decolorization of textile wastewater by Phanerochaete chrysosporium was investigated. Textile wastewater decolorization occurred during the primary phase of growth and secondary metabolism in carbon and nitrogen limited medium, respectively. It was found that glucose concentration up to 0.3 g/l has considerable effect on decolorisation rate. Further, it was also found that the concentration of the organic nitrogen of the effluent stream was sufficient to furnish the decolorisation process. It was observed that the inoculum size in this case within 10% increased the decolorisation rate rapidly. It was found that the temperature rise from 20 to 38 °C enhanced the rate of decolorization. The optimum temperature for decolorisation was found to be about 35 °C. Effect of pH from 2-4 on decolorization was also investigated. It is concluded that using Phanerochaete chrysosporium, decolorization of the azo dye containing effluent of the textile industry was achieved to about 96% within 28 h of operation.  相似文献   

6.
Ceriporiopsis subvermispora CZ-3, a wood degrading white rot fungus, was able to decolourize and degrade the first extraction stage effluent from kraft pulp bleaching at lower co-substrate concentration than the basidiomycetes previously investigated. With glucose at 1 g l−1, this fungus removed up to 90% colour, 45% COD, 62% lignin, 32% AOX, and 36% EOX in 48 h at temperatures of 30–35°C and pH 4.0–4.5. In the absence of glucose, the fungus removed up to 62% of the colour. Significant reduction in chlorinated aromatic compounds was observed and toxicity to zebra fish was completely eliminated. The fungal mycelium could be immobilized in polyurethane foam and used repeatedly to treat batches of effluent. The molecular weight of chlorolignins was substantially reduced.  相似文献   

7.
A continuous fluidized-bed bioreactor was developed for the decolourisation of cotton bleaching effluent with a wood rotting fungus. Different initial concentrations of effluent were tested with either glucose or starch as co-substrates. With this system, 75–80% colour removal was achieved with an initial A400 of 4.7, using a 3 day-retention time. It showed high and stable decolourisation activity in long term continuous operation. © Rapid Science Ltd. 1998  相似文献   

8.
Summary The use of Phanerochaete chrysosporium biomass for the removal of Reactofix Golden Yellow from aqueous solution and eight textile dyes (four azo and four anthraquinone) from a synthetic effluent (0.6 g/l) at different pH, temperature and biomass concentrations was studied. Adsorption was maximum at pH 2.0 and 40 °C using 2.45 g mycelial biomass. The rate constant of adsorption was 1.95×10−1/min for Reactofix Golden Yellow and 1.64×10−1/min for synthetic effluent. In both cases, the equilibrium data fitted well in the Langmuir but not the Freundlich model of adsorption, and the adsorption was biphasic. Adsorption decreased the COD of Reactofix Golden Yellow and synthetic effluent by 54 and 57%, respectively. Desorption (80–84%) of dyes from P. chrysosporium mycelial surface occurred as the pH increased from 2 to 10.  相似文献   

9.
The nutritional conditions supporting growth and maximum dye removal by Aspergillus lentulus have been investigated. Initially a composite media containing yeast extract, glucose and mineral components was used and the effect of various components on dye removal was studied. For maximum dye removal (≈100%), ≥0.5% (w/v) glucose and ≥0.25% (w/v) yeast extract were essential. While glucose played an important role in pellet formation, which in turn was important for dye removal, yeast extract contributed towards higher biomass production. Mineral components (except NH4NO3) did not affect dye removal significantly. Next the alternate sources of carbon (molasses, jaggery, starch and sodium acetate) and nitrogen (peptone, urea, ammonium nitrate, sodium nitrate and ammonium chloride) were tested. Among carbon sources, all the sources produced almost complete dye removal in 48 h (more than 97% in 24 h), except sodium acetate (64% in 48 h). All the tested nitrogen sources resulted in >90% dye removal in 48 h. Yeast extract and peptone gave best results with high dye removal rate (9.8 and 8.1 mg/l/h, respectively). However, among the low cost alternates, urea and NH4Cl came out to be suitable sources due to the high uptake capacity of the biomass produced coupled with high dye removal rate in case of NH4Cl. Therefore, a combination of urea and NH4Cl was tested, which produced complete dye removal with a high dye removal rate (10 mg/l/h). Finally the modified composite media containing urea and NH4Cl as nitrogen sources and glucose as carbon source was utilized for effluent treatment. Results indicated that performance of modified composite media was at par with composite media for supporting growth of A. lentulus and dye removal from the textile effluent.  相似文献   

10.
A laboratory-scale study was conducted to evaluate the feasibility of using palm oil mill effluent (POME) as a major substrate and other nutrients for maximum production of citric acid using the potential fungal strain Aspergillus niger (A103). Statistical optimization of medium composition (substrate–POME, co-substrates–wheat flour and glucose, and nitrogen source–ammonium nitrate) and fermentation time was carried out by central composite design (CCD) to develop a polynomial regression model through the effects of linear, quadratic, and interaction of the factors. The statistical analysis of the results showed that, in the range studied, ammonium nitrate had no significant effect whereas substrate, co-substrates and fermentation time had significant effects on citric acid production. The optimized medium containing 2% (w/w) of substrate concentration (POME), 4% (w/w) of wheat flour concentration, 4% (w/w) of glucose concentration, 0% (w/v) of ammonium nitrate and 5 days fermentation time gave the maximum predicted citric acid of 5.37 g/l which was found to be 1.5 g/l in the experimental run. The determination of coefficient (R 2) from the analysis observed was 0.964, indicating a satisfactory adjustment of the model with the response. The analysis showed that the major substrate POME (P < 0.05), glucose (P < 0.01), nutrient (P < 0.05), and fermentation time (P < 0.01) was more significant for citric acid production. The bioconversion of POME for citric acid production using optimal conditions showed the higher removal of chemical oxygen demand (82%) with the production of citric acid (5.2 g/l) on the final day of fermentation process (7 days). The pH and biosolids accumulation were observed during the bioconversion process.  相似文献   

11.
The upflow aerated biofilter with polyurethane foam cubes as the supporting medium was used for the investigation of nitrification studies on municipal sewage (secondary treated as well as untreated domestic sewage). In case of secondary treated sewage effluent, a synthetic composition of NH4 +-N and COD of each 50?mg/l was studied for a HRT variation of 24, 12, 8 and 6 hours. The ammonium removal efficiencies were found to be in the range of 98 to 100% with the steady-state effluent concentrations of NH4 +-N and NO2 ?-N in the range of 1–4 mg/l and 0.1–0.2?mg/l respectively. In case of domestic sewage system, nitrification studies along with suspended solids removal study was carried-out on untreated sewage for a HRT variation of 24, 12 and 6 hours. The ammonium removal efficiencies of 100% were observed for all the three HRT values at very high COD/NH4 +-N ratio of 15. The suspended solids removal efficiencies of 95 to 98% were observed with the average effluent suspended solids concentration of 5.9 to 15.9?mg/l. The experiments were conducted in non-backwash conditions of the biofilter. The study has revealed the best use of the upflow biofilter system for nitrification applications and suspended solids removal.  相似文献   

12.
Acinetobacter calcoaceticus was cultivated in a well-aerated stirred tank reactor and its phosphate uptake capacity was investigated. Statistical media optimization was done to figure out favourable growth conditions of Acinetobacter calcoaceticus NRRLB-552. Plackett–Burman design was used to figure out the key nutrients (sodium acetate, ammonium chloride and calcium chloride) featuring high growth and/or uptake of phosphate. The optimal concentrations for these nutrients were (sodium acetate 5.0 g/l, ammonium chloride 0.67 g/l, calcium chloride 0.05 g/l) obtained by central composite design (CCD) protocols and verified in shake flask cultivations. Predicted and experimental dry cell weights obtained using the optimized media were 2.046 and 2.54 g/l indicating 97% agreement. The optimal values of pH and temperature for growth and phosphate uptake were found to be 7.69 and 31.86 °C, respectively, using CCD. Batch kinetics was also established in shake flask and fermenter using optimized medium and environmental conditions. Phosphate uptakes of 21 mg/g biomass and 36 mg/g biomass were obtained in shake flask and fermenter, respectively. The possible inhibition of nutrients (carbon, nitrogen and phosphate) was also established under shake flask cultivation conditions. Growth of the bacteria was inhibited at a concentration higher than 0.4% carbon and 0.6% nitrogen. However increasing concentration of phosphate did not show any inhibitory effect on growth. The above kinetics and inhibition data will serve as suitable database for the development of a mathematical model for growth and its use will be able to facilitate appropriate reactor design for the removal of phosphates from industrial effluents.  相似文献   

13.
Anaerobic treatment of wastewater with a high salt content generated during a pickled-plum manufacturing process (TOC, 14g/l; ash, 150g/l; pH 2.7, hereafter called pickled-plum effluent) was investigated for its effect on the high salt content of the wastewater. The synthetic wastewater, including NaCl up to 30g/l, was treated anaerobically by a draw and fill method (treatment temperature, 37°C; volumetric loading rate of organic matter, 2g/l·d). The TOC removal efficiency and rate of gas evolution then gradually decreased as salt content increased, although stable operation was maintained. At NaCl concentrations above 30g/l, TOC removal efficiency decreased rapidly and stable operation could not be maintained. Five-fold-diluted pickled-plum effluent was treated by the same method at a volumetric TOC loading rate of 2.9g/l·d with a TOC removal efficiency of 71%. Five-fold-diluted pickled-plum effluent was also treated in an anaerobic fluidized-bed reactor (AFBR) at a maximum volumetric TOC loading rate of 3.0g/l·d, which gave almost the same results as the draw and fill method. However, ten-fold-diluted pickled-plum effluent could be treated in the AFBR at a maximum volumetric TOC loading rate of 11.1g/l·d with a TOC removal efficiency of 84.6%. The red pigment in the pickled-plum effluent was completely decolorized by the anaerobic treatment.  相似文献   

14.
Suillus and Boletinus were studied using Ohta medium. In media with glucose or trehalose, all tested strains grew well. With mannose and cellobiose, strains generally grew well, except for one strain of Suillus. Utilization of dextrin and soluble starch differed with each strain, and that of sucrose and glycerol was low for all strains. Utilization of four amino acids, arginine, glutamic acid, aspartic acid, and alanine, was similar to that of ammonium tartrate for Suillus strains, but mycelial growth with amino acids was clearly lower than with ammonium tartrate for the Boletinus strain. The effect of glucose and ammonium tartrate concentrations for nine strains of the genera Suillus and Boletinus was studied with ranges for glucose of 1–100 and 200g/l, respectively, and for ammonium tartrate of 0.2–5 and 20g/l, respectively. Six strains showed maximal growth at a glucose concentration greater than 25g/l, and one strain showed maximal growth at 70g/l. The results indicate that these fungi are adapted to relatively high concentrations of carbon sources. In general, glucose concentration at mycelial growth maximum decreased as ammonium tartrate concentration increased, and at higher concentrations of glucose, mycelial growth decreased more rapidly in higher concentrations of ammonium tartrate.  相似文献   

15.
Pulp and paper mill effluent was decolorized by growth ofAspergillus niger. Adding glucose (2.0 g/l) and NH4H2PO4 (1.0 g/l) improved decolorization by the fungus (leaving 19% of original colour) and reduced the BOD5 (43%) and the COD (41%) of the effluent after 48 h of incubation.
Résumé L'effluent d'un atelier de pâte à papier a été décoloré par la croissance d'Aspergillus niger. L'ajout de glucose (2.0 g/l) et de NH4H2PO4 (1.0 g/l) a amélioré la décoloration de l'effluent par la molsissure, lalssant 19% de la couleur originale, réduisant la DBO5 de 43% et la DCO de 41%, après 48 h d'incubation.


This work was carried out at the Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore-641 003, India.  相似文献   

16.
Summary The effect of high glucose concentrations on continuous ethanol production by passively immobilized Zymomonas mobilis cells has been studied. High effluent ethanol concentrations always led to low productivities. The maximum ethanol concentration attained was 92.8 g/l (98% glucose conversion) at a dilution rate of 0.14 h-1 with 200 g/l glucose medium. The observed enhancement of cell immobilization in the fibrous support at high glucose concentrations in the feed input seems to be related to the formation of bacterial filaments.Preliminary results from this work were previously presented at the Second Spanish Conference on Biotechnology (Barcelona, 1988)  相似文献   

17.
Summary The production of itaconic acid by immobilizedAspergillus terreus TKK 200-5-1 was studied both in shake flask cultures, and in continuous column bioreactors. The effect of glucose and ammonium nitrate concentrations, and of pH were examined using a statistical experimental plan. The highest itaconic acid product concentration could be reached at the highest investigated glucose concentration of 150 g/l and the highest initial pH of 3.75, in the absence of ammonium nitrate. In a continuous packed bed column system operated fro 4.5 months itaconic acid was obtained at a productivity of 328 mg/d per gram of polyurethane foam carrier.  相似文献   

18.
A study was conducted to investigate the efficiency of coagulation and flocculation processes for removing colour from a semi-aerobic landfill leachate from one of the landfill sites in Malaysia. Four types of coagulant namely aluminium (III) sulphate (alum), ferric (III) chloride, ferrous (II) sulphate and ferric (III) sulphate were studied using standard jar test apparatus. Results indicated that ferric chloride was superior to the other coagulants and removed 94% of colour at an optimum dose of 800 mg/l at pH 4. The effect of coagulant dosages on colour removal showed similar trend as for COD, turbidity and suspended solids. This suggested that colour in landfill leachate was mainly contributed by organic matters with some insoluble forms that exhibited turbidity and suspended solids readings. The results from this study suggested that ferric chloride could be a viable coagulant in managing colour problems associated with landfill leachate.  相似文献   

19.
Efficacy of a white rot fungus G. lucidum for reduction of colour of paper mill effluent under various growth conditions was evaluated. G. lucidum cultured in IBME medium supported maximum colour reduction on 18th day of fungal growth. The optimization of growth parameters further improved colour reduction. The 18 day old culture at 4 g/l inoculum concentration resulted in maximum decolourization (89%) of the effluent with pH adjusted to 6.5 at 35 degrees C along with maximum reduction in biological oxygen demand and chemical oxygen demand. Relative contribution of lignin peroxidase and laccase to the decolourization of paper mill effluent by G. lucidum was also observed.  相似文献   

20.
The fungus Pleurotus sajor-caju secretes phenol-oxidases that enable the use of recalcitrant compounds as substrates. The residues of paper manufacture contain high lignin levels, which gives the effluents a characteristic brownish colour. To test the potential of P. sajor-caju cultures on reducing these parameters, we used 90% of raw effluents from medium consistency oxygen delignification and bleaching stages plus 10% of mineral solution and different levels of glucose (5–15 g L?1) as substrate. We observed a greater fungal biomass in cultures using effluent than in controls. Cultures containing 10 to 15 g L?1 of glucose resulted in about 42% colour reduction. The polyphenol content was also reduced by 58.9% by the 13th day of culture. In addition, we observed the secretion of laccases (211.44 U mL?1 and 45.98 U mL?1 using ABTS and syringaldazine, respectively) and peroxidases (6.11 U mL?1-ABTS) both peaking at the 7th day of culture and with similar kinetics of production in different glucose concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号