首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
A simulation program using least-squares minimization was developed to calculate and fit heat capacity (cp) curves to experimental thermograms of dilute aqueous dispersions of phospholipid mixtures determined by high-sensitivity differential scanning calorimetry. We analyzed cp curves and phase diagrams of the pseudobinary aqueous lipid systems 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol/ 1,2-dipalmitoyl-sn-glycero-3phosphatidylcholine (DMPG/DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid/1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DMPA/DPPC) at pH 7. The simulation of the cp curves is based on regular solution theory using two nonideality parameters rho g and rho l for symmetric nonideal mixing in the gel and the liquid-crystalline phases. The broadening of the cp curves owing to limited cooperativity is incorporated into the simulation by convolution of the cp curves calculated for infinite cooperativity with a broadening function derived from a simple two-state transition model with the cooperative unit size n = delta HVH/delta Hcal as an adjustable parameter. The nonideality parameters and the cooperative unit size turn out to be functions of composition. In a second step, phase diagrams were calculated and fitted to the experimental data by use of regular solution theory with four different model assumptions. The best fits were obtained with a four-parameter model based on nonsymmetric, nonideal mixing in both phases. The simulations of the phase diagrams show that the absolute values of the nonideality parameters can be changed in a certain range without large effects on the shape of the phase diagram as long as the difference of the nonideality parameters for rho g for the gel and rho l for the liquid-crystalline phase remains constant. The miscibility in DMPG/DPPC and DMPA/DPPC mixtures differs remarkably because, for DMPG/DPPC, delta rho = rho l -rho g is negative, whereas for DMPA/DPPC this difference is positive. For DMPA/DPPC, this difference is interpreted as being caused by a negative rho g value, indicating complex formation of unlike molecules in the gel phase.  相似文献   

2.
Arrhenius plots of various enzyme and transport systems associated with the liver mitochondrial inner membranes of ground squirrels exhibit changes in slope at temperatures of 20-25 degrees C in nonhibernating but not in hibernating animals. It has been proposed that the Arrhenius breaks observed in nonhibernating animals are the result of a gel to liquid-crystalline phase transition of the mitochondrial membrane lipids, which also occurs at 20-25 degrees C, and that the absence of such breaks in hibernating animals is due to a major depression of this lipid phase transition to temperatures below 4 degrees C. In order to test this hypothesis, we have examined the thermotropic phase behavior of liver inner mitochondrial membranes from hibernating and nonhibernating Richardson's ground squirrels, Spermophilus richardsonii, by differential scanning calorimetry and by 19F nuclear magnetic resonance and fluorescence polarization spectroscopy. Each of these techniques indicates that no lipid phase transition occurs in the membranes of either hibernating or nonhibernating ground squirrels within the physiological temperature range of this animal (4-37 degrees C). Moreover, differential scanning calorimetric measurements indicate that only a small depression of the lipid gel to liquid-crystalline phase transition, which is centered at about -5 degrees C in nonhibernating animals and at about -9 degrees C in hibernators, occurs. We thus conclude that the Arrhenius plot breaks observed in some membrane-associated enzymatic and transport activities of nonhibernating animals are not the result of a lipid phase transition and that a major shift in the gel to liquid-crystalline lipid phase transition temperature is not responsible for seasonal changes in the thermal behavior of these inner mitochondrial membrane proteins.  相似文献   

3.
The miscibility of phosphatidylcholine (PC) and phosphatidylglycerol (PG) with different chain lengths (n = 14, 16) was examined by differential scanning calorimetry (DSC) at pH 2 and pH 7. The determination of the coexistence curves of the phase diagrams was performed using a new procedure, namely the direct simulation of the heat capacity curves as described recently (Johann et al. 1996, Garidel et al. 1997). From the simulations of the heat capacity curves first estimates for the nonideality parameters for nonideal mixing as a function of composition were obtained and phase diagrams were constructed using temperatures for the onset and offset of melting which were corrected for the broadening effect caused by a decrease in cooperativity of the transition. In most cases, the composition dependence of the nonideality parameters indicated nonsymmetric mixing behavior. The phase diagrams were further refined by simulations of the coexisting curves using a four-parameter model to account for nonideal and nonsymmetric mixing in the gel as well as in the liquid-crystalline phase. The mixing behavior of the systems was analyzed as a function of pH and chain length difference to elucidate the effect of these two parameters on the shape of the phase diagrams. At pH 7 the phase boundaries are much closer together and a narrower coexistence range is obtained compared to the corresponding phase diagrams at pH 2. For DPPC/DMPG at pH 2, the shape of the phase diagram and the strongly positive nonideality parameter ρ 1 for the liquid-crystalline phase indicates an upper azeotropic point. This indicates an unusual behavior of the system, namely more pronounced clustering of like molecules in the liquid-crystalline phase compared to the gel phase. Received: 17 March 1997 / Accepted: 4 July 1997  相似文献   

4.
The lateral distribution of 1-palmitoyl-2-[10-(1-pyrenyl)decanoyl]phosphatidylcholine (PyrPC) was studied in small unilamellar vesicles of 1,2-dipalmitoyl-, 1,2-dimyristoyl-, and 1-palmitoyl-2-oleoyl-phosphatidylcholine (DPPC, DMPC, and POPC, respectively) under anaerobic conditions. The DPPC and DMPC experiments were carried out over temperature ranges above and below the matrix phospholipid phase transition temperature (Tm). The excimer to monomer fluorescence intensity ratio (E/M) was determined as a function of temperature for the three PyrPC/lipid mixtures. Phase and modulation data were used to determine the temperature dependence of pyrene fluorescence rate parameters in gel and in liquid-crystalline bilayers. These parameters were then used to provide information about excited-state fluorescence in phospholipid bilayers, calculate the concentration of the probe within liquid-crystalline and gel domains in the phase transition region of PyrPC in DPPC, and simulate E/M vs. temperature curves for three systems whose phase diagrams are different. From the simulated curves we could determine the relationship between the shape of the three simulated E/M vs. temperature curves and the lateral distribution of the probe. This information was then used to interpret the three experimentally derived E/M vs. temperature curves. Our results indicate that PyrPC is randomly distributed in pure gel and fluid phosphatidylcholine bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The ternary system palmitoylsphingomyelin (PSM)/palmitoyloleoylphosphatidylcholine (POPC)/cholesterol is used to model lipid rafts. The phase behavior of the three binary systems PSM/POPC, PSM/cholesterol, and POPC/cholesterol is first experimentally determined. Phase coexistence boundaries are then determined for ternary mixtures at room temperature (23 degrees C) and the ternary phase diagram at that temperature is obtained. From the diagram at 23 degrees C and the binary phase diagrams, a reasonable expectation is drawn for the ternary phase diagram at 37 degrees C. Several photophysical methodologies are employed that do not involve detergent extraction, in addition to literature data (e.g., differential scanning calorimetry) and thermodynamic rules. For the ternary phase diagrams, some tie-lines are calculated, including the one that contains the PSM/POPC/ cholesterol 1:1:1 mixture, which is often used in model raft studies. The diagrams here described are used to rationalize literature results, some of them apparently discrepant, and to discuss lipid rafts within the framework of liquid-ordered/liquid-disordered phase coexistence.  相似文献   

6.
The sarcoplasmic reticulum channel (ryanodine receptor) from cardiac myocytes was reconstituted into planar lipid bilayers consisting of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) in varying ratios. The channel activity parameters, i.e., open probability and average open time and its resolved short and long components, were determined as a function of POPE mole fraction (X(PE)) at 22.4 degrees C. Interestingly, all of these parameters exhibited a narrow and pronounced peak at X(PE) approximately 0.80. Differential scanning calorimetric measurements on POPE/POPC liposomes with increasing X(PE) indicated that the lipid bilayer enters a composition-driven transition from the liquid-crystalline state to the gel state at 22.4 degrees C when X(PE) approaches 0.80. Thus, the peaking of the reconstituted channel activity at X(PE) approximately 0.80 in the planar bilayer could result from the appearance of gel/liquid-crystalline domain boundaries at this POPE content. Lipid packing at domain boundaries is known to be looser as compared to the homogenous gel or liquid-crystalline state. We propose that the attractive potential of packing defects at lipid domain boundaries and entropic excluded-volume effects could result in the direct interactions of the transmembrane region of the channel protein with the lipid-packing defects at the lipid/protein interface, which could thus provide a favorable environment for the open state of the protein. The present findings indicate that the activity of the sarcoplasmic reticulum calcium channel could be modulated by lipid domain formation upon slight changes in membrane lipid composition in vivo.  相似文献   

7.
M Jaworsky  R Mendelsohn 《Biochemistry》1985,24(14):3422-3428
CaATPase from rabbit sarcoplasmic reticulum has been reconstituted into binary lipid mixtures of 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE)/1,2-dipalmitoylphosphatidylcholine-d62 (DPPC-d62) and 1-stearoyl-2-oleoylphosphatidylcholine (SOPC)/DPPC-d62. Fourier-transform infrared (FT-IR) spectroscopy has been used to monitor temperature-induced structural alterations in the individual lipid components in the presence and absence of protein. A simple two-state model is used to construct a phase diagram that is in good agreement with one constructed from differential scanning calorimetry data, for the POPE/DPPC-d62 (protein-free) system. Although these two lipids are miscible over at least most of the composition range, substantial deviations from ideal behavior are observed. An estimate of the nonideality of mixing in both the gel and liquid-crystalline phases is obtained from regular solution theory. The phase diagram for SOPC/DPPC-d62 shows gel-phase immiscibility. FT-IR studies of ternary (POPE/DPPC-d62/CaATPase) complexes indicate that both lipid components are disordered by protein at all temperatures studied. In addition, their melting events are broadened and shifted to lower temperatures compared with the appropriate binary lipid mixture. Semiquantitative estimates for the fraction of each lipid melted are obtained from the model. The effect of protein on SOPC/DPPC-d62 mixtures depends on that total lipid to protein ratio. At low protein levels, SOPC is preferentially selected by CaATPase, so that bulk lipid is enriched in DPPC-d62. At high levels of protein, both lipid components are selected. The applicability of vibrational spectroscopy for determination of the partitioning preferences of membrane proteins into regions of particular chemical structure or physical order in a complex lipid environment is demonstrated.  相似文献   

8.
The relaxation kinetics of aqueous lipid dispersions after a pressure jump (p-jump) was investigated using time-resolved pressure perturbation calorimetry (PPC). Analysis of the calorimetric response curves by deconvolution with the instrumental response function gives information about slow processes connected with the lipid phase transition. The lipid transition from the gel to the liquid-crystalline state was found to be a multi-step process with relaxation constants in the seconds range resolvable by time-resolved PPC and faster processes with relaxation times shorter than ca. 5 s that could not be resolved by the instrument. The faster processes comprise ca. 50% of the total heat uptake at the transition midpoint. This is the first calorimetric measurement showing the multi-step nature of the transition. The results are in good agreement with data obtained with other detection methods and with molecular modelling experiments describing the transition as a multi-step process with nucleation and growth steps.  相似文献   

9.
Mixtures of phospholipids with cholesterol are able to form liquid-ordered phases that are characterised by short-range orientational order and long-range translational disorder. These Lo-phases are distinct from the liquid-disordered, fluid Lα-phases and the solid-ordered, gel Lβ-phases that are assumed by the phospholipids alone. The liquid-ordered phase can produce spatially separated in-plane fluid domains, which, in the form of lipid rafts, are thought to act as platforms for signalling and membrane sorting in cells. The areas of domain formation are defined by the regions of phase coexistence in the phase diagrams for the binary mixtures of lipid with cholesterol. In this paper, the available binary phase diagrams of lipid-cholesterol mixtures are all collected together. It is found that there is not complete agreement between different determinations of the phase diagrams for the same binary mixture. This can be attributed to the indirect methods largely used to establish the phase boundaries. Intercomparison of the various data sets allows critical assessment of which phase boundaries are rigorously established from direct evidence for phase coexistence.  相似文献   

10.
Alterations in the inter- and intramolecular packing characteristics of aqueous dispersions of methyl derivatives of di-O-hexadecylglycerophosphocholine (DHPC), an ether lipid in which the methyl group is substituted at the 1, 2 or 3 position of the glycerol backbone, were monitored by changes in the vibrational frequencies and intensities of selected spectral features by Raman spectroscopy. Temperature profiles constructed from spectra reflecting intermolecular order/disorder rearrangements (C-H stretching mode region) and intramolecular order/disorder processes (C-C stretching mode region) provide insight into several important structural properties of diether lipid bilayers. The introduction of a methyl group into any position of the glycerol backbone alters both the characteristics of the DHPC pretransition and the temperature of the gel to liquid-crystalline phase transition. The main gel to liquid-crystalline phase transitions are 42.8 degrees C in the pure diether lipid, 41.6 degrees C for 3-Me-DHPC, 40.5 degrees C for 2-Me-DHPC and 38.1 degrees C for 1-Me-DHPC. Temperature profiles indicate that the degree of disordering for both the gel and liquid-crystalline states follows the sequence 2-Me-DHPC less than 3-Me-DHPC less than DHPC less than 1-Me-DHPC. Phase transition widths, delta T, determined from the spectroscopic temperature profiles, are discussed in terms of van't Hoff enthalpy functions involving both interchain and trans/gauche effects.  相似文献   

11.
J A Centeno  T J O'Leary 《Biochemistry》1990,29(31):7289-7296
We have investigated the effects of methanol, ethanol, and 1-propanol on the phase transitions of L-alpha-dimyristoylphosphatidylethanolamine using differential scanning calorimetry and Fourier transform infrared spectroscopy. Alcohols lower the temperature of the gel (L beta) to liquid-crystalline (L alpha) phase transition and also lower the temperature of the unhydrated crystalline (Lc) to liquid-crystalline phase transition. When the lipid/alcohol dispersions are incubated at 2 degrees C for 1-18 h, a dehydrated crystalline phase forms, which gives rise to a phase transition at about 55 degrees C. This dehydrated crystalline phase forms more quickly at higher alcohol concentrations. Although alcohol at low concentration lowers the enthalpy of the observed melting transition, at high concentrations 1-propanol markedly increases this enthalpy. The phase giving rise to this high-enthalpy melting process is distinct from both the unhydrated crystalline phase and the gel phase. Infrared spectra suggest that this phase contains significant amounts of alcohol in a solid solution with the lipid.  相似文献   

12.
Influence of vitamin E on phosphatidylethanolamine lipid polymorphism   总被引:1,自引:0,他引:1  
The effect of vitamin E, in its major form alpha-tocopherol and its synthetic analog alpha-tocopheryl acetate, on phosphatidylethanolamine lipid polymorphism has been studied by mean of differential scanning calorimetry and 31P-nuclear magnetic resonance techniques. From the interaction of these tocopherols with dielaidoylphosphatidylethanolamine it is concluded that both molecules promote the formation of the hexagonal HII phase at temperatures lower than those of the pure phospholipid. When the tocopherols were incorporated in the saturated dimiristoylphosphatidylethanolamine, which has been shown not to undergo bilayer to hexagonal HII phase transition, up to 90 degrees C, they induce the phospholipid to partially organize in hexagonal HII phase. From our experiments it is shown that alpha-tocopherol is more effective than its analog in promoting HII phase in these systems. It is also shown that, while alpha-tocopheryl acetate does not significantly perturb the gel to liquid-crystalline phase transition of dimirystoylphosphatidylethanolamine, alpha-tocopherol does so and more than one peak appears in the calorimetric profile, indicating that lateral phase separations are taking place.  相似文献   

13.
The fluorophore 4-heptadecyl-7-hydroxycoumarin was used as a probe to study the properties of phospholipid bilayers at the lipid-water interface. To this end, the steady-state fluorescence anisotropy, the differential polarized phase fluorometry, and the emission lifetime of the fluorophore were measured in isotropic viscous medium, in lipid vesicles, and in the membrane of vesicular stomatitis virus. In the isotropic medium (glycerol), the probe showed an increase in the steady-state fluorescence anisotropy with a decrease in temperature, but the emission lifetime was unaffected by the change in temperature. In glycerol, the observed and predicted values for maximum differential tangents of the probe were identical, indicating that in isotropic medium 4-heptadecyl-7-hydroxycoumarin is a free rotator. Nuclear magnetic resonance and differential scanning calorimetric studies with lipid vesicles containing 1-2 mol % of the fluorophore indicated that the packaging density of the choline head groups was affected in the presence of the probe with almost no effect on the fatty acyl chains. The fluorophore partitioned equally well in the gel and liquid-crystalline phase of the lipids in the membrane, and the phase transition of the bilayer lipids was reflected in the steady-state fluorescence anisotropy of the probe. The presence of cholesterol in the lipid vesicles had a relatively small effect on the dynamics of lipids in the liquid-crystalline state, but a significant disordering effect was noted in the gel state. One of the most favorable properties of the probe is that its emission lifetime was unaffected by the physical state of the lipids or by the temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The lecithins 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) have been synthesized by reacylation of the appropriate lysolecithins with fatty acid anhydrides. These lecithins have been used to make model membranes in mixtures with dipalmitoyllecithin (DPPC), and phase diagrams of the two bilayer systems have been constructed. These diagrams show that there is essentially no gel-state miscibility in the POPC-DPPC bilayers at any composition, and that SOPC-DPPC bilayers show gel-state immiscibility at DPPC concentrations of less than 50 mol%, and partial miscibility above 50 mol% DPPC. Analysis of the POPC-DPPC phase diagram on the assumption of athermal solution in the liquid-crystalline phase shows that the two lipids mix nearly randomly above the phase transition. The liquidus curve of SOPC-DPPC bilayers showed deviations from calculated ideal behaviour, which indicated that there is a small excess tendency for the formation of pairs of like molecules in SOPC-DPPC bilayers in the liquid-crystalline phase. Thus, in the liquid-crystalline phase, SOPC and DPPC do not pack quite as well as do POPC and DPPC.  相似文献   

15.
By use of neutron diffraction for structural analysis, the temperature-pressure phase diagrams of several fully hydrated single-component phospholipid bilayers have been explored up to hydrostatic pressures of 2 kbars. The gel to liquid-crystalline phase transition temperature Tm increases linearly with pressure over a 10(-3)-2 kbar range in accordance with the Clausius-Clapeyron relationship giving dTm/dP values of 23.0 degrees C/kbar for 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 28.0 degrees C/kbar for 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The so-called pretransition was not observed in the isothermal pressure experiments, suggesting that no appreciable volume change occurs at this transition. These results are in good agreement with those reported using other techniques. In addition, at pressures higher than the isothermal liquid-crystalline to gel transition pressure, a new pressure-induced phase transition was observed for DPPC and DSPC in which the hydrocarbon chains from apposing monolayers become interdigitated with the chains occupying a cross-sectional area approximately equal to 5% less than in the gel phase. The temperature-pressure phase diagrams show the gel-interdigitated phase boundaries to be highly curved and the minimum pressure at which interdigitation occurs to decrease with increasing hydrocarbon chain length.  相似文献   

16.
The thermotropic phase behavior of aqueous dispersions of nine dl-methyl branched anteisoacylphosphatidylcholines was studied by differential scanning calorimetry and 31P nuclear magnetic resonance spectroscopy. The calorimetric studies demonstrate that these compounds all exhibit a complex phase behavior, consisting of at least two minor, low-enthalpy, gel-state transitions which occur at temperatures just prior to the onset of the gel/liquid-crystalline phase transition. In addition, at still lower temperatures, anteisobranched phosphatidylcholines containing fatty acyl chains with an odd number of carbon atoms show a major, higher enthalpy, gel-state transition, which was assigned to a conversion from a condensed to a more loosely packed gel phase. No such transition was observed for the even-numbered compounds in aqueous dispersion, but when dispersed in aqueous ethylene glycol, a major gel-state transition is clearly discernible for two of the even-numbered phospholipids. The major gel-state transition exhibits heating and cooling hysteresis and is fairly sensitive to the composition of the bulk aqueous phase. 31P NMR spectroscopic studies indicate that the major gel-state transition is accompanied by a considerable change in the mobility of the phosphate head group and that, at temperatures just prior to the onset of the gel/liquid-crystalline phase transition, the mobility of the phosphate head group is comparable to that normally exhibited by the liquid-crystalline state of most other phospholipids. The temperatures at which the gel/liquid-crystalline phase transition occurs and the enthalpy change associated with this process are considerably lower than those of the saturated n-acyl-PC's of comparable acyl chain length.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Glycophorin has been isolated in pure form from human erythrocyte membranes and reconstituted into lipid vesicles composed of binary mixtures of bovine brain phosphatidylserine (PS) and acyl-chain perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62). The effect of protein on lipid melting behavior and order has been monitored with differential scanning calorimetry and Fourier transform infrared spectroscopy (FT-IR). The phase diagram for PS/DPPC-d62 is consistent with that previously reported for PS/DPPC (Stewart et al. (1979) Biochim. Biophys. Acta 556, 1-16) and indicates that acyl chain perdeuteration does not greatly alter the lipid mixing characteristics. The use of deuterated lipid allows the examination of lipid order by FT-IR of each lipid component in the binary mixtures as well as in the ternary (lipid/lipid/protein) systems. Addition of glycophorin to a 30:70 PS/DPPC-d62 binary lipid mixture results in a preferential glycophorin/PS interaction leading to bulk lipid enriched in DPPC-d62. This is revealed in two ways: first, through cooperative calorimetric transitions increased in temperature from the binary lipid system and second, through FT-IR melting curves of the DPPC-d62 component which shows transitions increased in both onset and completion temperatures in the presence of protein. In addition, non-cooperative melting events are observed at temperatures below the onset of phase separation. The FT-IR data are used to assign these non-cooperative events to the melting of the PS component. For the 50:50 lipid mixture with protein, two transitions are observed in the DSC experiments. The IR results indicate that both lipid components are involved with the lower temperature event.  相似文献   

18.
We study the effect of ergosterol on the physical properties of 1-[2H31]palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) multibilayers using deuterium nuclear magnetic resonance. NMR spectra were taken as a function of temperature and ergosterol concentration up to 70 mol %. The spectral first moments show that there is a dramatic difference in the ability of ergosterol to disorder the gel phase and to order the liquid-crystalline phase of POPE membranes, an unusual behavior among lipid/sterol systems studied up to now. Further investigation of the liquid-crystalline phase shows that ergosterol (erg) increases the chain order of POPE-d31, but that this effect saturates at 10 mol % ergosterol. This is in marked contrast to the effect of cholesterol (chol) on POPE membranes: the chain order of POPE increases with cholesterol to at least 45 mol %. Moreover, we found that at higher ergosterol concentrations (>40 mol %) ergosterol decreases the POPE-d31 chain order, which, to our knowledge, has not been directly observed in other lipid/sterol systems. The temperature-composition phase diagram is presented. Finally, at all ergosterol concentrations, the chain order of liquid-crystalline-phase POPE is much smaller than that of comparable POPE/chol membranes. This implies that there is no liquid-ordered phase behavior for POPE/erg membranes.  相似文献   

19.
Differential scanning calorimetry (DSC) experiments have been performed on the amphiphilic peptide/1,2-bis(perdeuteriopalmitoyl)-sn-glycero-3-phosphocholine system for which partial phase diagrams have been measured by deuterium nuclear magnetic resonance. The solute concentration dependence of the transition enthalpy in such systems is often interpreted in terms of an annulus of lipid withdrawn, by the solvent, from participation in the transition while the bulk lipid melts with its fully enthalpy. This idea is equivalent to postulating ideal mixing between the lipid and the peptide/lipid complex, and there is little justification for such an assumption. Adaptation of regular solution theory to this system demonstrates that the peptide concentration dependence of the transition enthalpies can be incorporated into a thermodynamic model which reproduces the observed phase behavior fairly well without postulating that a complexing annulus of lipid around the peptide be withdrawn from participating in the chain-melting transition. The model parameters determined by simultaneous fitting of the phase behavior and transition enthalpies are used to simulate the DSC scan shapes. The asymmetry of the calorimetric scans for chi 2 less than or equal to 0.02 is reproduced by the model, but a broad component observed for higher concentration is not. In light of the results presented here, previous analyses of the calorimetric behavior of two-component systems in terms of symmetric transitions which do not account for the possible extent of a region of two-phase equilibrium must be questioned.  相似文献   

20.
In this study, 2H and 31P-NMR techniques were used to study the effects of trehalose and glycerol on phase transitions and lipid acyl chain order of membrane systems derived from cells of E. coli unsaturated fatty acid auxotroph strain K1059, which was grown in the presence of [11,11-2H2]-oleic acid or [11,11-2H2]-elaidic acid. From an analysis of the temperature dependence of the quadrupolar splitting it could be concluded that neither 1 M trehalose or glycerol generally had any significant effect on the temperature of the lamellar gel to liquid-crystalline phase transition. In the case of the oleate-containing hydrated total lipid extract, glycerol but not trehalose caused a 5°C increase of this transition temperature. In general, both cryoprotectants induced an ordering of the acyl chains in the liquid-crystalline state. Trehalose and glycerol both decrease the bilayer to non-bilayer transition temperature of the hydrated lipid extract of oleate-grown cells by about 5°C, but only trehalose in addition induces an isotropic to hexagonal (HII) phase transition. In the biological membranes, trehalose and not glycerol destabilised the lipid bilayer, and in the case of the E. coli spheroplasts, part of the induced non-bilayer structures is ascribed to a hexagonal (HII) phase in analogy with the total lipids. Interestingly, 1 mM Mg2+ was a prerequisite for the destabilisation of the lipid bilayer. In the hydrated total lipid extract of E. coli grown on the more ordered elaidic acid, both transition temperatures were shifted about 20°C upwards compared with the oleate-containing lipid, but the effect of trehalose on the lipid phase behaviour was similar. The bilayer destabilising ability of trehalose might have implications for the possible protection of biological systems by (cryo-)protectants during dehydration, in that protection is unlikely to be caused by preventing the occurrence of polymorphic phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号