首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Collagen types I and III were located by immunofluorescence procedures in the aorta and coronary arteries of the rat. Type I collagen was most prevalent in the adventitia of the aorta with only small amounts present in the intima and media. Type III collagen appeared to be a significant component in the media of the aorta and also in the adventitia of both blood vessels. The intima and media of the coronary arteries did not stain strongly for either type I or III collagen. Neither staining procedure was altered with preincubation of the sections with hyaluronidase or chondroitinase ABC. These studies indicate that type III collagen is a major component of the adventitia which has previously not been recognized by immunohistochemical techniques, possibly due to masking of collagen staining with glycosaminoglycans.  相似文献   

2.
At autopsy, 13 nonstenotic human left anterior descending coronary arteries [71.5 +/- 7.3 (mean +/- SD) yr old] were harvested, and related anamnesis was documented. Preconditioned prepared strips (n = 78) of segments from the midregion of the left anterior descending coronary artery from the individual layers in axial and circumferential directions were subjected to cyclic quasi-static uniaxial tension tests, and ultimate tensile stresses and stretches were documented. The ratio of outer diameter to total wall thickness was 0.189 +/- 0.014; ratios of adventitia, media, and intima thickness to total wall thickness were 0.4 +/- 0.03, 0.36 +/- 0.03, and 0.27 +/- 0.02, respectively; axial in situ stretch of 1.044 +/- 0.06 decreased with age. Stress-stretch responses for the individual tissues showed pronounced mechanical heterogeneity. The intima is the stiffest layer over the whole deformation domain, whereas the media in the longitudinal direction is the softest. All specimens exhibited small hysteresis and anisotropic and strong nonlinear behavior in both loading directions. The media and intima showed similar ultimate tensile stresses, which are on average three times smaller than ultimate tensile stresses in the adventitia (1,430 +/- 604 kPa circumferential and 1,300 +/- 692 kPa longitudinal). The ultimate tensile stretches are similar for all tissue layers. A recently proposed constitutive model was extended and used to represent the deformation behavior for each tissue type over the entire loading range. The study showed the need to model nonstenotic human coronary arteries with nonatherosclerotic intimal thickening as a composite structure composed of three solid mechanically relevant layers with different mechanical properties. The intima showed significant thickness, load-bearing capacity, and mechanical strength compared with the media and adventitia.  相似文献   

3.
We evaluated CNA35 as a collagen marker in healthy and atherosclerotic arteries of mice after both ex vivo and in vivo administration and as a molecular imaging agent for the detection of atherosclerosis. CNA35 conjugated with fluorescent Oregon Green 488 (CNA35/OG488) was administered ex vivo to mounted viable muscular (uterine), elastic (carotid), and atherosclerotic (carotid) arteries and fresh arterial rings. Two-photon microscopy was used for imaging. CNA35/OG488 labeling in healthy elastic arteries was compared with collagen type I, III, and IV antibody labeling in histologic sections. For in vivo labeling experiments, CNA35/OG488 was injected intravenously in C57BL6/J and apolipoprotein E(-/-) mice. Ex vivo CNA35/OG488 strongly labeled collagen in the tunica adventitia, media, and intima of muscular arteries. In healthy elastic arteries, tunica adventitia was strongly labeled, but labeling in tunica media and intima was prevented by endothelium and elastic laminae. Histology confirmed the affinity of CNA35 for type I, III, and IV collagen in arteries. Strong CNA35/OG488 labeling was found in atherosclerotic plaques. In vivo applied CNA35/OG488 minimally labeled the tunica intima of healthy carotid arteries. Atherosclerotic plaques in apolipoprotein E(-/-) mice exhibited large uptake. CNA35/OG488 imaging in organs revealed endothelium as a limiting barrier for in vivo uptake. CNA35/OG488 is a good molecular imaging agent for atherosclerosis.  相似文献   

4.
Summary Rat mesenteric arteries, perfusion fixed in relaxed or contracted conditions, were digested with acid and elastase, bleach (sodium hypochlorite), or alkali to selectively remove collagen, elastin, or cells. Scanning electron microscopy was used to study the three-dimensional organization of the remaining cells or extracellular components. Smooth muscle cells of the tunica media were elongated and circumferentially oriented. Superior mesenteric artery cells had an irregular surface with numerous projections and some ends were forked. Small mesenteric artery cells were spindle shaped with longitudinal surface ridges, and showed extensive corrugations upon contraction. Elastin was present both as laminae and as an interconnected fibrous meshwork. Collagen was arranged in an irregular network of individual fibrils and small bundles of fibrils that formed nests around the cells in both arteries. This irregular arrangement persisted, with no apparent reordering or loss of order, upon contraction. The lack of an ordered arrangement or specialized organization at the cell ends suggests mechanical coupling of the cells to elastin or collagen throughout the length of the cell, allowing for force transmission in a number of directions. The tunica media is thus a composite material consisting of cells, elastin, and collagen. The isotropic network of fibers is well suited for transmitting the shearing forces placed on it by contraction of smooth muscle cells and by pressure-induced loading.  相似文献   

5.
We have previously described that chronic administration of ouabain induces hypertension and functional alterations in mesenteric resistance arteries. The aim of this study was to analyze whether ouabain treatment also alters the structural and mechanical properties of mesenteric resistance arteries. Wistar rats were treated for 5 wk with ouabain (8.0 microg/day sc). The vascular structure and mechanics of the third-order branches of the mesenteric artery were assessed with pressure myography and confocal microscopy. Total collagen content was determined by picrosirius red staining, collagen I/III was analyzed by Western blot, and elastin was studied by confocal microscopy. Vascular reactivity was analyzed by wire myography. Internal and external diameters and cross-sectional area were diminished, whereas the wall-to-lumen ratio was increased in arteries from ouabain-treated rats compared with controls. In addition, arteries from ouabain-treated rats were stiffer. Ouabain treatment decreased smooth muscle cell number and increased total and I/III collagens in the vascular wall. However, this treatment did not modify adventitia and media thickness, nuclei morphology, elastin structure, and vascular reactivity to norepinephrine and acetylcholine. The present work shows hypotrophic inward remodeling of mesenteric resistance arteries from ouabain-treated rats that seems to be the consequence of a combination of decreased cell number and impaired distension of the artery, possibly due to a higher stiffness associated with collagen deposition. The narrowing of resistance arteries could play a role in the pathogenesis of hypertension in this model.  相似文献   

6.
The dorsal vessel (DV) in the abdomen of the blood-feeding insect Rhodnius prolixus was divided functionally into two regions, the heart, into which haemolymph entered the DV through four pairs of ostia located in abdominal segment VII, and the aorta, along which the haemolymph was propelled from abdominal segment VI to the thorax. Osmium-fixed whole mounts revealed the DV to consist of spirally arranged striated muscle fibers and to possess two rows of ventrally attached longitudinal fibers extending the length of the abdomen. Seven pairs of alary muscles were found attached to the DV in the posterior abdominal segments. Contractions of the alary muscles attached to the ventral surface of abdominal segments VII and VIII served to expand the heart. Electron microscopy revealed the DV to consist of a thin layer of contractile elements surrounded by an inner (intima) and outer (adventitia) connective tissue layer. Embedded in the intima along each lateral side of the DV were two large groups of endocardial cells extending the length of the DV. A small group of pericardial cells was embedded in the adventitia along the mid-ventral side of the DV, and clusters of pericardial cells were found attached to the alary muscles. Nerve terminals were found only on the heart: they contained agranular synaptic vesicles approximately 30 nm in diameter and densely stained granules approximately 100-120 nm in diameter. These structural components are discussed in relation to the role of the DV in circulation.  相似文献   

7.
Types I, III and V collagens and proteoglycan were localized in the aorta by indirect immunofluorescence techniques. Type I collagen was more prominent in media and adventitia than in intima while type III collagen predominated in intima and media but appeared less significant in adventitia. Type V collagen was observed in intima and media only and was seen surrounding smooth muscle cells. Type I collagen was located between elastic fibres but type III collagen appeared to envelop the fibres, suggesting an interaction between elastic fibres and type III collagen. Pretreatment of sections with testicular hyaluronidase caused no changes in staining for type I collagen, but adventitial areas showed increased staining for type III collagen. After digestion with chondroitinase ABC, intimal and medial areas showed increased staining for type III collagen. Therefore, type III collagen forms stronger interactions with proteoglycans and hyaluronic acid than does type I collagen and type III collagen in adventitia is largely masked by hyaluronic acid, while type III collagen in intima and media is associated with proteoglycan. Thus, type III collagen is a more significant component of adventitia than previously recognized. Proteoglycan was also partly localized along elastic fibres. It is, therefore, suggested that elastic fibres are coated with type III collagen, which itself is coated with proteoglycan.  相似文献   

8.
Wen CK  Goh MC 《Proteins》2006,64(1):227-233
Nanodissection of single fibrous long spacing (FLS) type collagen fibrils by atomic force microscopy (AFM) reveals hierarchical internal structure: Fibrillar subcomponents with diameters of approximately 10 to 20 nm were observed to be running parallel to the long axis of the fibril in which they are found. The fibrillar subcomponent displayed protrusions with characteristic approximately 270 nm periodicity, such that protrusions on neighboring subfibrils were aligned in register. Hence, the banding pattern of mature FLS-type collagen fibrils arises from the in-register alignment of these fibrillar subcomponents. This hierarchical organization observed in FLS-type collagen fibrils is different from that previously reported for native-type collagen fibrils, displaying no supercoiling at the level of organization observed.  相似文献   

9.
M Locke  P Huie 《Tissue & cell》1972,4(4):601-612
Connective tissue around the nerve cord and heart have been studied in Calpodes ethlius. Four components at, distinguishable by selective staining and electron microscopy: matrix, collagen fine fibrils less than 60 Å in diameter and broad fibers about 400 Å in diameter after glutaraldehyde only the broad fibers react selectively for peroxidase and stain with phosphotungstic acid. These fibers are most abundant in connective tissue which is elastic. The fine fibrils are arranged parallel to and between the peroxidase reaciive fibers. It is suggested that the peroxidase activity of the fibers may be related to their stabilization. The collagen fibers have the narrow fibrillar form characteristic of Lepidoptera and Coleoptera and have a macroperiod of about 660 Å and a banding pattern matching that found in other insects.  相似文献   

10.
Mechanical properties of the adventitia are largely determined by the organization of collagen fibers. Measurements on the waviness and orientation of collagen, particularly at the zero-stress state, are necessary to relate the structural organization of collagen to the mechanical response of the adventitia. Using the fluorescence collagen marker CNA38-OG488 and confocal laser scanning microscopy, we imaged collagen fibers in the adventitia of rabbit common carotid arteries ex vivo. The arteries were cut open along their longitudinal axes to get the zero-stress state. We used semi-manual and automatic techniques to measure parameters related to the waviness and orientation of fibers. Our results showed that the straightness parameter (defined as the ratio between the distances of endpoints of a fiber to its length) was distributed with a beta distribution (mean value 0.72, variance 0.028) and did not depend on the mean angle orientation of fibers. Local angular density distributions revealed four axially symmetric families of fibers with mean directions of 0°, 90°, 43° and ?43°, with respect to the axial direction of the artery, and corresponding circular standard deviations of 40°, 47°, 37° and 37°. The distribution of local orientations was shifted to the circumferential direction when measured in arteries at the zero-load state (intact), as compared to arteries at the zero-stress state (cut-open). Information on collagen fiber waviness and orientation, such as obtained in this study, could be used to develop structural models of the adventitia, providing better means for analyzing and understanding the mechanical properties of vascular wall.  相似文献   

11.
Collagen monomers, oligomers, and fibrillar structures were isolated from chick tendons at various stages of development and studied by rotary shadowing. Monomers of Type I collagen, solubilized in 0.15 M NaCl solutions, were mostly present as collagen, pN-collagen, and pC-collagen with few procollagen molecules. They did not form polymers, nor were they associated with a carrier. Dimers of fibrillar collagen molecules were arranged in a 4-D stagger, suggesting that this was the preferred molecular interaction for the initiation of collagen fibrillogenesis. Type XII collagen molecules were mostly free, but some were attached by their central globular domain to one end of free fibrillar collagen molecules. Tenascin and Type VI collagen were also identified. The fibril populations consisted of collagen and beaded structures. These fibrils consisted of beads (globular domains) about 23 nm in diameter, separated by a period about 27 nm in length. Beads were linked by filamentous structures. These beaded fibrils probably represent the microfibrils of elastin.  相似文献   

12.
Summary Polyclonal antibodies against native human typeV collagen were produced in rabbits and goats. Following purification, crossreaction of the antibodies with highly immunogenic peptides of basement membranes or the interstitial matrix was excluded on the basis of sensitive radioimmunoassays. These antibodies, when applied to cryostat sections of human oral mucosa, liver and arterial walls, never stained basement membranes as did antibodies against type-IV collagen or laminin. On the contrary, we observed delicate arborizing fibers in the interstitial compartment with extensions contacting structures such as subepidermal basement membranes. Arterioles contained a unilamellar sheath of longitudinally oriented fibers limited to the intimal layer. Larger arteries exhibited a multilamellar fibrous fluorescence over the whole intima, whereas the media showed a much weaker staining. The data identified type-V collagen as an interstitial fibrillar collagen rather than a basement membrane collagen, with a tissue pattern completely different from that of collagens types I, III, VI or fibronectin. A reinterpretation of the role of type-V collagen in connective tissue function is warranted.  相似文献   

13.
The importance of matrix micromechanics is increasingly recognized in cardiovascular research due to the intimate role they play in local vascular cell physiology. However, variations in micromechanics among arterial layers (i.e. intima, media, adventitia), as well as dependency on local matrix composition and/or structure, anatomical location or developmental stage remain largely unknown. This study determined layer-specific stiffness in elastic arteries, including the main pulmonary artery, ascending aorta, and carotid artery using atomic force indentation. To compare stiffness with age and frozen processing techniques, neonatal and adult pulmonary arteries were tested, while fresh (vibratomed) and frozen (cryotomed) tissues were tested from the adult aorta. Results revealed that the mean compressive modulus varied among the intima, sub-luminal media, inner-middle media, and adventitia layers in the range of 1–10 kPa for adult arteries. Adult samples, when compared to neonatal pulmonary arteries, exhibited increased stiffness in all layers except adventitia. Compared to freshly isolated samples, frozen preparation yielded small stiffness increases in each layer to varied degrees, thus inaccurately representing physiological stiffness. To interpret micromechanics measurements, composition and structure analyses of structural matrix proteins were conducted with histology and multiphoton imaging modalities including second harmonic generation and two-photon fluorescence. Composition analysis of matrix protein area density demonstrated that decrease in the elastin-to-collagen and/or glycosaminoglycan-to-collagen ratios corresponded to stiffness increases in identical layers among different types of arteries. However, composition analysis was insufficient to interpret stiffness variations between layers which had dissimilar microstructure. Detailed microstructure analyses may contribute to more complete understanding of arterial micromechanics.  相似文献   

14.
Expansive vascular remodeling is considered a feature of vulnerable plaques. Although inflammation is upregulated in the media and adventitia of atherosclerotic lesions, its contribution to expansive remodeling is unclear. We investigated this issue in injured femoral arteries of normo- and hyperlipidemic rabbits fed with a conventional (CD group; n=20) or a 0.5% cholesterol (ChD group; n=20) diet. Four weeks after balloon injury of the femoral arteries, we examined vascular wall alterations, localization of macrophages and matrix metalloproteases (MMP)-1, -2, -9, and extracellular matrix. Neointimal formation with luminal stenosis was evident in both groups, while expansive remodeling was observed only in the ChD group. Areas immunopositive for macrophages, MMP-1, -2 and -9 were larger not only in the neointima, but also in the media and/or adventitia in the injured arterial walls of the ChD, than in the CD group. Areas containing smooth muscle cells (SMCs), elastin and collagen were smaller in the injured arterial walls of the ChD group. MMP-1, -2 and -9 were mainly localized in infiltrating macrophages. MMP-2 was also found in SMCs and adventitial fibroblasts. Vasa vasorum density was significantly increased in injured arteries of ChD group than in those of CD group. These results suggest that macrophages in the media and adventitia play an important role in expansive atherosclerotic remodeling via extracellular matrix degradation and SMC reduction.  相似文献   

15.
The present study was designed to evaluate the expression of dopamine D1 and D2 receptor mRNAs in systemic and pulmonary vasculatures. Using specific antisense riboprobes for dopamine D1 and D2 receptor cDNAs, in situ hybridization histochemistry was performed in the aorta, common carotid artery, vertebral artery, pulmonary artery, and superior vena cava of the adult male Sprague Dawley rat. In the case of the aorta, common carotid artery, and vertebral artery, dopamine D1 receptor mRNAs localized mainly in the smooth muscle cells of the tunica media. However, the signals of dopamine D2 receptor mRNAs were found in the endothelium and subendothelial layer of tunica intima, and interstitial cells of tunica adventitia. In the case of the pulmonary artery, signals of dopamine D1 receptor mRNAs were detected within the tunica intima, media, and adventitia. Expression of D2 receptor mRNAs was detected in the walls of small blood vessels within the tunica adventitia of the pulmonary artery. There were no detectable signals of dopamine D1 and D2 receptor mRNAs in the vein. The uneven distribution of dopamine D1 and D2 receptor mRNAs in the rat systemic vasculatures and pulmonary artery suggests that dopamine differentially regulates the vasodilation of the systemic and pulmonary arteries through the differential stimulation of dopamine D1 and D2 receptor.  相似文献   

16.
The coronary artery of the black Bengal goat was studied by light microscopy. The wall of the coronary artery consisted of the tunica intima, tunica media and tunica externa. The tunica intima consisted of a single layer of flattened endothelium. The tunica media was well-developed and composed of mainly of smooth muscle cells together with some fine elastic fibers. The tunica externa consisted of predominant collagen fibers, and some elastic fibers and smooth muscle cells. Elastic fibers in the tunica externa formed a circular arrangement around the tunica media. Sex differences were not observed. The media with well-developed smooth muscle cells may be responsible for changes in functional physiological conditions of the heart.  相似文献   

17.
Summary Biochemical studies have been used to assess the quantitative changes in elastin and collagen in hypertensive vs. normotensive arteries. However, the relative distribution and organization of these fibrous proteins is likely to be equal in importance to their absolute amounts. In this study we have used scanning electron microscopy in association with selective digestion techniques to assess the organization of cellular and extracellular components of the tunica media of mesenteric arteries of spontaneously hypertensive rats. Superior and small mesenteric arteries were digested with acid, alkali, or bleach to exposure cells, collagen, or collagen and elastin, respectively. We observed that hypertension does not cause a qualitative change in the 3-dimensional arrangement of cells, collagen, or elastin in spontaneously hypertensive arteries when compared to normotensive arteries. However, cells in the superior artery are significantly different in overall shape and surface features when compared to cells of small arteries. These differences in surface morphology of cells are present in hypertensive and normotensive vessels and suggest that superior and small mesenteric artery cells transmit load to the isotropic matrix in different ways. In the elasto-muscular superior artery, force is transmitted across digitations throughout the cell surface. In the muscular small artery, force is transmitted across the tapered, smooth cell surface.  相似文献   

18.
The mechanical loading-deformation relation of elastin and collagen fibril bundles is fundamental to understanding the microstructural properties of tissue. Here, we use multiphoton microscopy to obtain quantitative data of elastin and collagen fiber bundles under in situ loading of coronary adventitia. Simultaneous loading-imaging experiments on unstained fresh coronary adventitia allowed morphometric measurements of collagen and elastin fibril bundles and their individual deformation. Fiber data were analyzed at five different distension loading points (circumferential stretch ratio λθ = 1.0, 1.2, 1.4, 1.6, and 1.8) at a physiological axial stretch ratio of λaxial = 1.3. Four fiber geometrical parameters were used to quantify the fibers: orientation angle, waviness, width, and area fraction. The results show that elastin and collagen fibers in inner adventitia form concentric densely packed fiber sheets, and the fiber orientation angle, width, and area fraction vary transmurally. The extent of fiber deformation depends on the initial orientation angle at no-distension state (λθ = 1.0 and λaxial = 1.3). At higher distension loading, the orientation angle and waviness of fibers decrease linearly, but the width of collagen fiber is relatively constant at λθ = 1.0–1.4 and then decrease linearly for λθ ≥ 1.4. A decrease of the relative dispersion (SD/mean) of collagen fiber waviness suggests a heterogeneous mechanical response to loads. This study provides fundamental microstructural data for coronary artery biomechanics and we consider it seminal for structural models.  相似文献   

19.
Scanning electron microscopy was used to study the normal architectural arrangement of elastic tissue in a medium-sized muscular artery. Selective NaOH sonication digestion or formic acid digestion was used to expose and isolate the elastic networks in the femoral arteries of four healthy dogs. The digested segments were neutralized and freeze-dried before mounting for scanning electron microscopy (SEM) observation. The fenestrated internal elastic lamina (IEL) had a smooth surface with scattered regions of the fine elastic fibers that made up lacy networks protruding from the luminal surface. Prominent ellipsoid fenestrae, randomly scattered across the surface, were grouped into small and large sizes based on their mean diameter. The openings of most fenestrae were bridged by elastic fibers to give the fenestrae a sieve-like appearance. Large, transversely oriented, fusiform gaps were randomly scattered along the length of the IEL. These gaps, filled in by an elastic fiber network, sometimes spanned as much as a quarter of the vessel circumference. It is suggested that these gaps represent splits in the IEL that have been repaired. The tunica media contained a complex network of anastomosing elastic fibers and lamellae that were primarily circumferential in orientation. A well-defined external elastic lamina formed a solid sheet at the junction of the tunica media and the tunica adventitia. The tunica adventitia contained 8-10 incomplete lamellae of large, interconnecting, longitudinally oriented fibers. The architecture of the elastic network in canine femoral artery was compared with that previously described in medium-sized canine veins and in the rat femoral artery.  相似文献   

20.
A new technique which brilliantly colors collagen fibers in a field of polarized light reveals that during mid-life the smooth muscle cells in the tunica media of the human aorta begin to disappear. The connective tissue is divided between two regions; one below the subintimal layer and the other under the adventitia. Fine collagen fibers extend upward from the former into the subintima and beyond into the intima and the overlying atheromatous plaques of the aging aorta. Thus, the source of fibrous thickening of the vessel is not confined solely to the intimal layer; at least, a portion of the total collagen content arises deep within the aortic wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号