首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The cap structure in human U6 small nuclear (sn)RNA, gamma-monomethylguanosine triphosphate (meGTP), was conjugated to human serum albumin and used as antigen to raise polyclonal antibodies in rabbits. The resulting antibodies reacted specifically with meGTP but not with GTP, GDP, GMP, meGMP, meATP, meCTP, meUTP, or with methyl phosphate in enzyme-linked immunosorbent assay and/or in radioimmunoassays. Although less efficiently, meGDP was also recognized by these antibodies. Indirect immunofluorescence studies with anti-meGTP antibodies showed predominantly nuclear immunofluorescence. Anti-meGTP antibodies immunoprecipitated intact U6 snRNA from a mixture of HeLa cell RNAs. In addition to the U6 snRNA, anti-meGTP antibodies immunoprecipitated several additional small RNAs that varied in length from approximately 50 to 330 nucleotides. These RNAs contained the meGTP cap structure and are structurally distinct from U6 snRNA. One of these meGTP-containing RNAs was found to be previously characterized 7SK RNA; human 7SK RNA synthesized in vitro also contained the same cap structure. Results obtained in this study provide evidence for the presence of gamma-monomethyl-GTP cap structure in a wide spectrum of human cellular RNAs. These antibodies will be useful in studying the structure and function of this new family of small RNAs.  相似文献   

4.
The interaction between ribosomal protein L11 from Escherichia coli and in vitro synthesized RNA containing its binding site from 23S rRNA was characterized by identifying nucleotides that interfered with complex formation when chemically modified by diethylpyrocarbonate or hydrazine. Chemically modified RNA was incubated with L11 under conditions appropriate for specific binding of L11 and the resulting protein-RNA complex was separated from unbound RNA on Mg(2+)-containing polyacrylamide gels. The ability to isolate L11 complexes on such gels was affected by the extent of modification by either reagent. Protein-bound and free RNAs were recovered and treated with aniline to identify their content of modified bases. Exclusion of RNA containing chemically altered bases from L11-associated material occurred for 29 modified nucleotides, located throughout the region corresponding to residues 1055-1105 in 23S rRNA. Ten bases within this region did not reproducibly inhibit binding when modified. Multiple bands of RNA were consistently observed on the nondenaturing gels, suggesting that significant intermolecular RNA-RNA interactions had occurred.  相似文献   

5.
The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity.  相似文献   

6.
A specific immunoprecipitation method, using rabbit anti-(chick DNA polymerase beta) IgG was applied to detect the polypeptide of DNA polymerase beta among translation products obtained in vitro with mRNA extracted from chick embryos. A polypeptide of Mr = 40 000 was specifically immunoprecipitated from [35S]methionine-labeled translation products and was competitive with the purified DNA polymerase beta for the antibody. Furthermore, the 40 000-Mr translation product obtained in vitro had DNA polymerase activity, which was detected by assay in situ after electrophoresis in a polyacrylamide gel containing DNA. The mRNA for DNA polymerase beta was polyadenylated and its content was estimated as the range of 0.001% of total poly(A)-rich RNA on the basis of [35S]methionine incorporation in the translation in vitro. The size of this mRNA was determined to be about 1800 nucleotides by zone sedimentation and agarose gel electrophoresis under denaturating conditions.  相似文献   

7.
8.
Assembly of splicing precursor RNAs into ribonucleoprotein particle (RNP) complexes during incubation in in vitro splicing extracts was monitored by a new system of RNP gel electrophoresis. The temporal pattern of assembly observed by our system was identical to that obtained by other gel and gradient methodologies. In contrast to the results obtained by other systems, however, we observed requirements of U1 small nuclear RNPs (snRNPs) and 5' splice junction sequences for formation of specific complexes and retention of U1 snRNPs within gel-fractionated complexes. Single-intron substrate RNAs rapidly assembled into slow-migrating complexes. The first specific complex (A) appeared within a minute of incubation and required ATP, 5' and 3' precursor RNA consensus sequences, and intact U1 and U2 RNAs for formation. A second complex (B) containing precursor RNA appeared after 15 min of incubation. Lariat-exon 2 and exon 1 intermediates first appeared in this complex, operationally defining it as the active spliceosome. U4 RNA was required for appearance of complex B. Released lariat first appeared in a complex of intermediate mobility (A') and subsequently in rapidly migrating diffuse complexes. Ligated product RNA was observed only in fast-migrating complexes. U1 snRNPs were detected as components of gel-isolated complexes. Radiolabeled RNA within the A and B complexes was immunoprecipitated by U1-specific antibodies under gel-loading conditions and from gel-isolated complexes. Therefore, the RNP antigen remained associated with assembled complexes during gel electrophoresis. In addition, 5' splice junction sequences within gel-isolated A and B complexes were inaccessible to RNase H cleavage in the presence of a complementary oligonucleotide. Therefore, nuclear factors that bind 5' splice junctions also remained associated with 5' splice junctions under our gel conditions.  相似文献   

9.
10.
We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (< or = 500 nt). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as 'control' conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a 'footprint'), it is possible to detect local changes in the secondary and tertiary structure of RNA, as well as the formation of RNA-protein contacts. This protocol takes 1.5-3 d to complete, depending on the type of analysis used.  相似文献   

11.
12.
13.
14.
Bulged-out nucleotides or internal loops are present in the stem-loop structures of several antisense RNAs. We have used the antisense/target RNA system (CopA/CopT) that controls the copy number of plasmid R1 to examine the possible biological function of bulged-out nucleotides. Two regions within the major stem-loop of the antisense RNA, CopA, carry bulged-out nucleotides. Base pairing in either one or both of these regions of the stem was restored by site-specific mutagenesis and in one case a new internal loop was introduced. The set of mutant and wild-type CopA variants was characterized structurally in vitro. The results reported here indicate a possible function of the bulges: their presence protects CopA RNA from being a substrate for the double-strand-specific enzyme RNase III. In vitro cleavage rates were drastically increased when either the lower or both bulges were absent. This is paralleled by a similar, but not identical, effect of the bulges on metabolic stability of the CopA RNAs in vivo. The degradation pathways of wild-type and mutant CopA in various strain backgrounds are discussed. In the accompanying paper, we address the significance of bulges in CopA for binding to the target RNA in vitro and for its inhibitory efficiency in vivo.  相似文献   

15.
16.
17.
An in vitro system for the editing of apolipoprotein B mRNA   总被引:27,自引:0,他引:27  
D M Driscoll  J K Wynne  S C Wallis  J Scott 《Cell》1989,58(3):519-525
A novel form of RNA editing generates two forms of apolipoprotein B (apo-B) mRNA by converting C at nucleotide 6666 to U or a U-like base. We have established an in vitro system for the editing of apo-B mRNA using synthetic RNAs and S100 extracts from rat hepatoma cells. Editing was detected by a sensitive primer extension assay and confirmed by DNA sequencing. The in vitro editing activity is specific and sensitive to proteinase K. Apo-B100 RNAs were synthesized in vitro from deletion mutants spanning nucleotide 6666. Synthetic RNAs containing 2383, 483, and 55 nucleotides of apo-B mRNA sequence were edited in vitro with similar efficiency, but an RNA containing 26 nucleotides was not edited.  相似文献   

18.
Unusual ribosomal RNA of the intestinal parasite Giardia lamblia.   总被引:16,自引:7,他引:9       下载免费PDF全文
The anaerobic protozoan Giardia lamblia is a common intestinal parasite in humans, but is poorly defined at molecular and phylogenetic levels. We report here a structural characterization of the ribosomal RNA (rRNA) and rRNA genes of G. lamblia. Gel electrophoresis under native or non-denaturing conditions identified two high molecular weight rRNA species corresponding to the 16-18S and 23-28S rRNAs. Surprisingly, both species (1300 and 2300 nucleotides long, respectively) were considerably shorter than their counterparts from other protozoa (typically 1800 and 3400 nucleotides), and from bacteria as well (typically 1540 and 2900 nucleotides long). Denaturing polyacrylamide gel electrophoresis identified a major low molecular RNA of 127 nucleotides and several minor species, but no molecules with the typical lengths of 5.8S (160 nucleotides) and 5S (120 nucleotides) rRNA. The G. lamblia 1300, 2300, and 127 nucleotide RNAs are encoded within a 5.6 kilobase pair tandemly repeated DNA, as shown by Southern blot analysis and DNA cloning. Thus, the rRNA operon of this eukaryotic organism can be no longer than a typical bacterial operon. Sequence analysis identified the 127 nucleotide RNA as homologous to 5.8S RNA, but comparisons to archaebacterial rRNA suggest that Giardia derived from an early branch in eukaryotic evolution.  相似文献   

19.
Emara MM  Liu H  Davis WG  Brinton MA 《Journal of virology》2008,82(21):10657-10670
Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.  相似文献   

20.
RNA from bound polysomers of lactating ewe's mammary gland directs the synthesis of the three major milk proteins (alphas, beta and kappa-caseins) in a cell-free system derived from rabbit reticuyocytes. The "in vitro" product was identified by immunoprecipitation with specific antibodies and by electrophoresis in SDS polyacrylamide gel. Each of these messengers was purified from 20 to 25 fold from total membrane-bound polysomal RNA using poly U-Sepharose chromatography. This purified fraction assayed in a reticulocyte cell-free system is able to direct also the synthesis of 2 minor secretory proteins (beta-lactoglobulin and alpha-lactalbumin). The messenger RNAs purified by hybridization to poly U-Sepharose have a sedimentation coefficient of about 12 S and an apparent molecular weight of approximatively 3.5 s 10-5 daltons was observed by polyacrylamide gel electrophoresis under denaturing contitions. This value which correspond to about 900 nucleotides is significantly greater than the number expected for coding milk proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号