首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(4):189-195
Metabolism of hydrazine derivatives, procarbazine and iproniazid, to reactive free radical intermediates has been studied using spin-trapping techniques in intact human promyelocytic leukemia (HL60) and mouse hepatic cell lines. While HL60 cells have been shown to contain both myeloperoxidase and cytochrome P-450 enzymes, the hepatic cell line shows only cytochrome P-450 activity. Both peroxidases and cytochrome P-450 have been reported to catalyze biotransformation of hydrazines. Procarbazine and iproniazid were rapidly metabolized in these cell lines to methyl and isopropyl radicals, respectively. However, in HL60 cells, procarbazine was metabolized by myeloperoxidase while iproniazid was metab olized mostly by the cytochrome P-450 system. In the hepatic cells, both of these compounds were metabolized by the P-450 system.  相似文献   

2.
Metabolism of hydrazine derivatives, procarbazine and iproniazid, to reactive free radical intermediates has been studied using spin-trapping techniques in intact human promyelocytic leukemia (HL60) and mouse hepatic cell lines. While HL60 cells have been shown to contain both myeloperoxidase and cytochrome P-450 enzymes, the hepatic cell line shows only cytochrome P-450 activity. Both peroxidases and cytochrome P-450 have been reported to catalyze biotransformation of hydrazines. Procarbazine and iproniazid were rapidly metabolized in these cell lines to methyl and isopropyl radicals, respectively. However, in HL60 cells, procarbazine was metabolized by myeloperoxidase while iproniazid was metab olized mostly by the cytochrome P-450 system. In the hepatic cells, both of these compounds were metabolized by the P-450 system.  相似文献   

3.
As is the case for cytochrome P-450c, arene 1,2-oxides have been identified as initial metabolites when naphthalene and anthracene are oxidized by cytochrome P-450b in a highly purified, reconstituted system. Overall rates of metabolism by cytochrome P-450b are greater than 3-fold and greater than 50-fold lower than the respective rates of metabolism by cytochrome P-450c. For both hydrocarbons, the (-)-(1S,2R)-oxide predominates (74%) with cytochrome P-450b as the terminal oxidant, based on trapping the labile arene oxides as N-acetyl-L-cysteine S-conjugates of known absolute configuration. This result is in marked contrast to data obtained with cytochrome P-450c where the (+)-(1R,2S)-oxides predominate (73-greater than 95%). In the absence of added epoxide hydrolase, the metabolically formed arene oxides rapidly isomerize to phenols. Addition of increasing amounts of epoxide hydrolase to the incubation medium results in the formation of trans-1,2-dihydrodiols at the expense of phenols from the common arene oxide intermediates. Evaluation of the kinetic parameters (Km and kcat) for the hydration of the (+)- and (-)-enantiomers of both arene oxides by epoxide hydrolase has indicated that the (+)-(1R,2S)-enantiomers exhibit lower values of Km (approximately 1 microM) whereas the values of kcat are similar for both enantiomers of a given arene oxide. These parameters have allowed construction of a mathematical model which predicts the enantiomer composition of the dihydrodiols formed from naphthalene in reconstituted systems containing specific epoxide hydrolase concentrations. The data reported argue against a selective functional coupling mechanism between cytochrome P-450c and epoxide hydrolase in the metabolism of naphthalene and anthracene to the 1,2-dihydrodiols.  相似文献   

4.
Hepatic mixed-function oxidase metabolism of the ubiquitous pollutant polychlorinated biphenyls (PCBs) is implicated in their toxification and detoxification. We used dichlorobiphenyls (DCBs) as models to investigate the effect of the chloro substituent sites on this metabolism experimentally and by molecular orbital calculations. Reconstituted, purified cytochrome P-450 PB-B and BNF-B, the major terminal oxidase isozymes of this system, from phenobarbital (PB)- and beta-naphthoflavone (BNF)-induced rats were used to investigate this metabolism. Both isozymes are also induced by PCBs. High-performance liquid chromatography (HPLC) was used to detect, quantify, and isolate metabolites. Metabolite structures were identified by mass spectrometry, dechlorination to identifiable hydroxybiphenyls, and HPLC retention times. All DCBs yielded 3- and 4- but no 2-monohydroxylated metabolites (3,3'-DCB also yielded a dihydroxy metabolite). Di-o-chloro-substituted DCBs were metabolized primarily by cytochrome P-450 PB-B, mono-o-chloro substituted DCBs by both isozymes approximately equivalently, and DCBs without o-chloro substituents by BNF-B primarily. Thus PB-B preferentially metabolizes noncoplanar DCBs and BNF-B coplanar DCBs. The cytochrome isozymes exhibited differing regioselectivities for DCB metabolism - PB-B hydroxylated unchlorinated phenyl rings and BNF-B chlorinated rings. Incorporation of epoxide hydrolase yielded DCB dihydrodiols, and hydroxy metabolite patterns were consistent with those calculated from ring-opened arene oxide intermediates. Thus the rates and regioselectivities of metabolism and thus possibly the toxicity and carcinogenicity of DCBs are dependent on the cytochrome P-450 isozymes induced.  相似文献   

5.
The metabolic activation of [14C]phenol resulting in covalent binding to proteins has been studied in rat liver microsomes. The covalent binding was dependent on microsomal enzymes and NADPH and showed saturation kinetics for phenol with a Km-value of 0.04 mM. The metabolites hydroquinone and catechol were formed at rates which were 10 or 0.7 times that of the binding rate of metabolically activated phenol. The effects of cytochrome P-450 inhibitors and cytochrome P-450 inducers on the metabolism and binding of phenol to microsomal proteins, suggest that cytochrome P-450 isoenzyme(s) other than P-450 PB-B or P-450 beta NF-B catalyses the metabolic activation of phenol. Furthermore, reconstituted mixed-function oxidase systems containing cytochrome P-450 PB-B and P-450 beta NF-B were (on basis of cytochrome P-450 content) 6 and 11 times less active in catalysing the formation of hydroquinone than microsomes. The isolated metabolites hydroquinone and catechol bound more extensively to microsomal proteins than phenol and the binding of these was not stimulated by NADPH. The binding occurring during the metabolism of phenol could be predicted by the rates of formation of hydroquinone and catechol and the rates by which the isolated metabolites were bound to proteins.  相似文献   

6.
Mechanism-based destruction of cytochrome P-450 (P-450) and P-450 heme is observed during the oxidation of N-cyclopropyl and N-cyclobutyl benzylamines. The slower inactivation by the cyclobutylamines relative to cyclopropylamines is consistent with known relative rates of ring opening of cycloalkyl-substituted aminium radicals. Evidence was found that porphyrin meso adducts of the type reported for horseradish peroxidase and cyclopropanone hydrate (Wiseman, J. S., Nichols, J. S., and Kolpak, M. X. (1982) J. Biol. Chem. 257, 6328-6332) were not formed. Radiolabels from cyclopropylamine substrates were covalently attached to protein but essentially only from the cyclopropyl portion and not the benzylic portion. Neither label appeared to be bound to extractable heme; however, during oxidations with cyclopropylamines, labeled P-450 heme became covalently attached to protein. Oxidation of 1-phenylcyclobutylamine by P-450 yielded 2-phenyl-1-pyrroline and 2-phenylpyrrolidine, and the ring expansion is interpreted as evidence for the existence of aminium radicals based on precedents with monoamine oxidase (Silverman, R. B., and Zieske, P. A. (1985) Biochemistry 24, 2128-2138). In addition, purified P-450PB-B oxidized N-(1-phenylcyclobutyl)-benzylamine to N-(1-phenyl)cyclobutyl phenyl nitrone, identified using spectral techniques. This transformation involves two sequential oxidations with either a hydroxylamine or benzylidene intermediate. While P-450 oxidized the amine to both compounds, only the hydroxylamine was rapidly oxidized to give the nitrone. The ring expansion and nitrone products are interpreted in the context of aminium radical intermediates involved in the mechanism of P-450-catalyzed amine oxidation.  相似文献   

7.
Oxygen inhibition of CCl4 metabolism by different isoenzymes of cytochrome P-450 was assessed by studying liver microsomes isolated from control rats and rats treated with phenobarbital or isoniazid. Rates of CCl4 metabolism were similar for all microsomes under a nitrogen atmosphere. An air atmosphere inhibited metabolism by microsomes from control rats to 12% of the value under nitrogen and metabolism by microsomes from rats treated with phenobarbital to 5%. It inhibited metabolism by microsomes from rats treated with isoniazid only to 32%. Rats treated with phenobarbital, which increases hepatic cytochrome P-450 content, or isoniazid, which does not increase hepatic cytochrome P-450 content, both metabolized more CCl4 than control rats as indicated by exhalation of greater quantities of CCl4 metabolites and by an increase in CCl4 toxicity. These results indicate that some isoenzymes of cytochrome P-450 are more effective than others in metabolizing CCl4 when oxygen is present.  相似文献   

8.
Noradrenaline and adrenaline were metabolized by an NADPH- and oxygen-dependent process located within the hepatic microsomal fraction of the rat. Metabolism was inhibited by CO and compound SKF 525A, but not by pargyline, an inhibitor of monoamine oxidase, or by 3,4-dimethoxy-5-hydroxybenzoic acid, an inhibitor of catechol O-methyltransferase. It is concluded that the enzyme system responsible for the metabolism of the catecholamines was the microsomal mixed-function oxidase. The Km for noradrenaline was 2.4 mM and for adrenaline 1.0 mM, and V 15.6 and 3.6 nmol/min per mg of microsomal protein respectively. Both catecholamines bound to the microsomal fraction, producing a type II spectral change, with a Ks for noradrenaline of 0.9 mM and for adrenaline of 1.0 mM, and showed other characteristics of type II compounds by inhibited the reduction of cytochrome P-450 by NADPH and exhibiting an enhanced metabolism in the presence of acetone. The major product of catecholamine metabolism was an as yet unidentified alkali-labile compound, which did not correspond to any of the recognized catecholamine metabolites.  相似文献   

9.
Direct evidence is presented for the role of a cytochrome P-450 monooxygenase (called mixed-function oxidase, or polysubstrate mono-oxygenase, PSMO) in the metabolism of the sex pheromone (Z)-9-tricosene to its corresponding epoxide and ketone in the housefly. A secondary alcohol, most likely an intermediate in the conversion of the alkene to the ketone, was also tentatively identified. The results of in vivo and in vitro experiments showed that the PSMO inhibitors, piperonyl butoxide (PB) and carbon monoxide, markedly inhibited the formation of epoxide and ketone from (9,10-3H) (Z)-9-tricosene. An examination of the relative rates of (Z)-9-tricosene metabolism showed that males exhibited a higher rate of metabolism than females with the antennae of males showing the highest activity of any tissue/organ examined. The major product from all tissues/organs was the epoxide. Data from experiments with subcellular fractions showed that the microsomal fraction had the majority of enzyme activity, which was strongly inhibited by PB and CO and required NADPH and O2 for activity. A carbon monoxide difference spectrum with reduced cytochrome showed maximal absorbance at 450 nm and allowed quantification of the cytochrome P-450 in the microsomal fraction of 0.410-nmol cytochrome P-450 mg?1 protein. Interaction of (Z)-9-tricosene with the cytochrome P-450 resulted in a type I spectrum, indicating that the pheromone binds to a hydrophobic site adjacent to the heme moiety of the oxidized cytochrome P-450.  相似文献   

10.
It is determined to what extent certain inhibitors of the xenobiotic metabolizing enzyme systems have an influence on the mutagenicity of various pro-mutagens in Drosophila. 1-Phenylimidazole (PhI) is used as an inhibitor of the cytochrome P-450 (P-450) mediated monooxygenase activities. Iproniazid (Ipr) is a typical monoamine oxidase (MAO) inhibitor which as well seems capable of inhibiting to a certain extent P-450 mediated metabolism. N, N-Dimethyl benzylamine (N, N-DMB) is used as a competitive substrate for the N-oxidizing flavin-containing dimethylaniline monooxygenase (FDMAM). The enzyme-inhibiting activities of PhI and Ipr were determined in vitro using microsomes obtained from Drosophila larvae and adults. Both compounds were capable of inhibiting benzo[a]pyrene (BP) hydroxylation and p-nitroanisole (p-NA) demethylation, although for Ipr 100-fold higher concentrations were required compared to PhI. As model-mutagens were used: the nitrosamines dimethylnitrosamine (DMN) and diethylnitrosamine (DEN), the triazenes 1-(2,4,6-trichlorophenyl)-3,3-dimethyltriazene (Cl3PDMT), 1-(3-pyridyl)-3,3-dimethyltriazene (PyDMT) and dacarbazine (DTIC), the hydrazines procarbazine (PCZ), 1,1-dimethylhydrazine (1,1-DMH) and 1,2-dimethylhydrazine (1,2-DMH) as well as the pyrrolizidine alkaloid seniciphylline (SPh). Simultaneous or pretreatment with Ipr results in a clear decrease of the mutagenicity of Cl3PDMT, while PhI pretreatment leads to an increased mutagenicity. This indicates that these two inhibitors do not inhibit the same enzyme or isozyme. For SPh too, Ipr pretreatment results in some decrease of the mutagenicity. This is in contrast to DEN, where the activation is clearly inhibited by PhI while Ipr has only a minor effect. For DMN, DTIC and PCZ both Ipr and PhI pretreatment caused considerable decreases of the mutagenicity. Inhibition of the FDMAM catalyzed activity by N,N-DMB resulted in an increase of mutagenicity with Cl3PDMT, in a moderate decrease of mutagenicity with DTIC, and a marked decrease with DMN, which was strongly inhibited. In contrast to the clear-cut mutagenicity of PCZ, 1,1-DMH and 1,2-DMH are not mutagenic in Drosophila. No change was observed upon inhibition of the various metabolizing activities. Apart from using strain differences in metabolizing activities and enzyme induction, enzyme inhibition can also be used to determine the influence of metabolism on the in vivo mutagenicity of promutagens in Drosophila.  相似文献   

11.
A procedure for isolation of cytochrome oxidase and cytochrome P-450 from adrenocortical mitochondria was developed. The heme and copper contents, subunit composition, optical and EPR spectra for these enzymes were determined. The effects of pH, substrates and some inhibitors on the spectra of cytochrome P-450 were studied. It was found that cytochrome oxidase did not inhibit the reactions catalyzed by cytochrome P-450; cytochrome P-450 had no inhibiting effect on the oytochrome oxidase activity.  相似文献   

12.
The peroxisome proliferators clofibric acid and di-(2-ethylhexyl)-phthalate (DEHP) preferentially induced the 12-hydroxylation, compared to the 11-hydroxylation, of lauric acid in rat liver microsomes. A marked increase in the affinity of spectral interaction of this substrate with cytochrome P-450 was also observed. In addition, both clofibric acid and DEHP treatment produced a marked effect on the profile of site- and stereo-specific microsomal metabolites of testosterone. These results demonstrate that both peroxisome proliferators induce similar form(s) of cytochrome P-450 which are active in the metabolism of endogenous substrates of cytochrome P-450. The possible relevance of these findings to the hepatotoxicity of peroxisome proliferators is discussed.  相似文献   

13.
Inhibition studies were used to investigate the identity of the microsomal enzyme(s) responsible for the NADPH-dependent N-hydroxylation of 2-amino-6-nitrotoluene. The N-hydroxylation reaction was inhibited by several cytochrome P-450 inhibitors as well as by methimazole, a substrate for flavin-containing monooxygenase. Heat inactivation of flavin-containing monooxygenase had no effect on the rate of the reaction but abolished the inhibition by methimazole. These results indicate that the flavin-containing monooxygenase-mediated metabolism of methimazole produced an inhibitor of the cytochrome P-450-catalyzed N-hydroxylation reaction. When glutathione was included in the incubation the inhibition by methimazole was abolished, presumably due to the reduction of oxygenated metabolites of methimazole. These results show that methimazole inhibition does not necessarily implicate flavin-containing monooxygenase in microsomal N-hydroxylation reactions.  相似文献   

14.
Hydroxylation of dibenzo- p-dioxin (DD), dibenzofuran (DF), biphenyl (BP) and diphenyl ether (DPE) by the white-rot fungus Phlebia lindtneri GB-1027 was studied. DD and DF were rapidly degraded in a culture of P. lindtneri. The initial oxidation products were identified by gas chromatography-mass spectrometry. P. lindtneri oxidized DD to 2-hydroxy-DD, and DF to 2- and 3-hydroxy-DF. BP and DPE were also oxidized to p-hydroxy-BP and p-hydroxy-DPE, respectively. The oxidation catalyzed by P. lindtneri with each substrate was position-specific, because the hydroxyl group was introduced to the molecular edge of every substrate. Significant inhibition of the degradation of DD and DF was observed in incubation with the cytochrome P-450 monooxygenase inhibitors 1-aminobenzotriazole and piperonyl butoxide. These experiments with cytochrome P-450 inhibitors, and formation of the mono-hydroxyl metabolites suggest that P. lindtneri initially oxidizes DD, DF, BP, and DPE by a cytochrome P-450 monooxygenase and that it directly introduces a hydroxyl group to each of these substrates.  相似文献   

15.
Clinical interactions of macrolides with various drugs lead to elimination impairment, increase of plasma concentration and overdose-like effects, resulting from modifications of their metabolism. Previous studies have shown that treatment of rats by the macrolide antibiotics of the oleandomycin and erythromycin series lead to the induction of an hepatic cytochrome P-450 which is implicated into their own metabolism. We have characterized PCN or macrolides induced cytochromes P-450 by their specific ability to interact with macrolide derivatives and, using the cytochrome P-450 spectral binding assays, we have shown that some compounds, implicated in drug interaction with macrolides, interact preferentially with the same cytochromes. This strongly suggests that specific blockage of cytochrome P-450 IIIA1 family by macrolides, is responsible for these drug interactions and that these interactions can be predicted easily by simple in vitro tests such as those described herein.  相似文献   

16.
In the present paper, the heterogeneity of hepatic cytochrome P-450 isoenzymes in the mouse has been probed, using warfarin as the substrate. Both sex and strain differences in the in vitro microsomal metabolism of warfarin have been investigated in male and female warfarin-resistant HC and warfarin-susceptible LAC-grey mouse strains. Animals were either untreated or treated with the cytochrome P-450 inducers phenobarbitone, beta-napthoflavone or clofibrate. In both sexes and strains of mice, metabolism of warfarin was stereoselective in favour of the R(+) enantiomer. However, regioselectively was different in both strains and sexes of untreated animals. After pretreatment with phenobarbitone, increases in the rate of formation of 4' and 7-hydroxy R(+) and S(-) warfarin metabolites in HC mice were observed, compared with untreated animals. In LAC-grey mice increases in 4'-, 6-, 7- and 8-hydroxy R(+) and S(-) warfarin metabolites were noted, compared with untreated animals. This data indicated that different amounts or forms of cytochrome P-450s were responsible for warfarin metabolism after phenobarbitone treatment in the two strains. Pretreatment of animals with beta-napthoflavone resulted in significant decreases in the rat of R(+) warfarin metabolism in both strains and sexes of mice indicating that the beta-naphthoflavone-inducible cytochrome P-450 isoenzymes were less active in the metabolism of warfarin, as compared to the uninduced isoenzymes. In addition, the cytochrome P-450 isoenzyme composition in the two mouse strains was different after clofibrate pretreatment, as reflected in reduced levels of some warfarin metabolites and a reduced total metabolism of warfarin, consistent with the narrow substrate specificity of clofibrate-induced cytochrome P450IVA1 for fatty acid hydroxylation. Accordingly, it is clear that both the basal and xenobiotic inducible hepatic cytochrome P-450 isoenzymes in warfarin-resistant and susceptible mice are different and therefore have implications for the in vivo disposition of warfarin.  相似文献   

17.
Renal microsomal cytochrome P-450-dependent arachidonic acid metabolism was correlated with the level of cytochrome P-450 in the rabbit kidney. Cobalt, an inducer of haem oxygenase, reduced cytochrome P-450 in both the cortex and medulla in association with a 2-fold decrease in aryl-hydrocarbon hydroxylase, an index of cytochrome P-450 activity, and a similar decrease in the formation of cytochrome P-450-dependent arachidonic acid metabolites by renal microsomes (microsomal fractions). Formation of the latter was absolutely dependent on NADPH addition and was prevented by SKF-525A, an inhibitor of cytochrome P-450-dependent enzymes. Arachidonate metabolites of cortical microsomes were identified by g.c.-m.s. as 20- and 19-hydroxyeicosatetraenoic acid, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid. The profile of arachidonic acid metabolites was the same for the medullary microsomes. Induction of cytochrome P-450 by 3-methylcholanthrene and beta-naphthoflavone increased cytochrome P-450 content and aryl-hydrocarbon hydroxylase activity by 2-fold in the cortex and medulla, and this correlated with a 2-fold increase in arachidonic acid metabolites via the cytochrome P-450 pathway. These changes can also be demonstrated in cells isolated from the medullary segment of the thick ascending limb of the loop of Henle, which previously have been shown to metabolize arachidonic acid specifically via the cytochrome P-450-dependent pathway. The specific activity for the formation of arachidonic acid metabolites by this pathway is higher in the kidney than in the liver, the highest activity being in the outer medulla, namely 7.9 microgram as against 2.5 micrograms of arachidonic acid transformed/30 min per nmol of cytochrome P-450 for microsomes obtained from outer medulla and liver respectively. These findings are consistent with high levels of cytochrome P-450 isoenzyme(s), specific for arachidonic acid metabolism, primarily localized in the outer medulla.  相似文献   

18.
Cytochrome P-450 is the terminal oxidase of an electron transport system that is responsible for the oxidative metabolism of a large variety of endogenous and exogenous compounds. This broad substrate selectivity is caused by multiple isozymes of cytochrome P-450 and the wide substrate selectivity of many of these isozymes. We have isolated 11 isozymes of cytochrome P-450 from the livers of rats (cytochromes P-450a-P-450k). We have found both polyclonal and monoclonal antibodies increasingly useful to distinguish among these isozymes and to quantitate enzyme levels in liver microsomal preparations where as many as 15 or more cytochrome P-450 isozymes are present. Several of these isozymes show considerable immunochemical relatedness to each other, and operationally they can be grouped into families of immunochemically related isozymes that include cytochromes P-450b and P-450e in one family, cytochromes P-450c and P-450d in another, and cytochromes P-450f-P-450i, and P-450k in a third family. Immunoquantitation of some of these isozymes has revealed dramatic increases of over 50-fold in the levels of certain of these isozymes when exogenous compounds are administered to rats.  相似文献   

19.
Summary Two approaches may be used to study the function of cytochrome P-450 in insects: (a) an evaluation of the spectral and catalytic properties of the hemoprotein while associated with microsomal membranes; (b) the solubilization, resolution and purification of the microsomal mixed-function oxidase system. The first approach has provided some understanding of the biochemical factors involved in the metabolism of a variety of compounds, including pesticides, drugs, hormones and many other xenobiotics. However, solubilization of the monooxygenase system allows the study of each of its components individually, providing a better insight on the sequence of events leading to the hydroxylation of a substrate, the type of intermediates formed, and the rate-limiting step(s). This report discusses studies carried out with the monooxygenase system associated with microsomal membranes, as well as procedures to solubilize and partially purify its components from housefly microsomes. The latter involves solubilization with either Triton X-100 or sodium cholate, followed by either ammonium sulfate fractionation, Sephadex G-200, DEAE-Sephadex A-50 column chromatography or by-amino-n-octyl-Sepharose 4B affinity chromatography. These procedures have shown that two cytochrome P-450 species (P-450 and P-450I) are present in microsomes isolated from a resistant housefly strain. Induction with either naphthalene or phenobarbital appears to increase cytochrome P-450I preferentially.An invited article.  相似文献   

20.
The NADPH-dependent lipid peroxidation in human placental mitochondria has been found to be inhibited strongly by amphenone B, aminoglutethimide and carbon monoxide, inhibitors of cytochrome P-450-mediated reactions, but was hardly affected by respiratory chain inhibitors. Cytochrome c, an exogenous electron acceptor which is known to compete with cytochrome P-450 for the reducing equivalents, showed an inhibitory effect on NADPH-dependent lipid peroxidation. The observed NADPH-dependent superoxide generation was also strongly inhibited by amphenone B and aminoglutethimide. Moreover, the lipid peroxidation in placental mitochondria was demonstrated to be stimulated by xanthine/xanthine oxidase added as superoxide generating system. This peroxidation was not affected by amphenone B and aminoglutethimide. On the other hand, the superoxide dismutase was found to inhibit both the xanthine oxidase- and NADPH-dependent lipid peroxidation. These data provide evidence that cytochrome P-450 is involved in NADPH-dependent mitochondrial lipid peroxidation. It is suggested that superoxide liberated from cytochrome P-450, in combination with iron, may be responsible for initiation of NADPH-dependent lipid peroxidation in human placental mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号