首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbate is present in millimolar concentrations in mammalian brain and can be released from cellular stores by membrane depolarization. We report here that physiologically relevant concentrations of ascorbate modulate 5-[3H]hydroxytryptamine ([3H]5-HT) binding to bovine frontal cortex membranes. Under conditions where [3H]5-HT binding is reversible and saturable, ascorbate causes a concentration-dependent increase in the affinity of [3H]5-HT for central 5-HT3 binding sites. At pH 7.4, increasing ascorbate from 0 to 5.7 mM changes the equilibrium affinity constant (KD) of binding to 5-HT3 sites from 125 nM to 30 nM, without affecting binding site number. These ascorbate-induced effects are pH dependent. At pH 7.1 binding to central 5-HT3 sites is essentially eliminated in the presence of ascorbate. These studies suggest that ascorbate and hydrogen ion concentration interactions may modulate serotonergic function.  相似文献   

2.
The present study demonstrates that [3H]imipramine binds to both high- and low-affinity imipramine binding components on membranes prepared from rat cerebral cortex. Scatchard and computer analyses of saturation experiments using a wide range of [3H]imipramine concentrations (0.5 nM-50 nM) revealed the presence of two binding components. Inhibition experiments in which membranes were incubated with [3H]imipramine and various concentrations of unlabelled imipramine gave shallow inhibition curves with a Hill coefficient of 0.60 +/- 0.04. When dissociation rates of imipramine were studied, biphasic dissociation curves were obtained with apparent half-times of dissociation of 2.5 +/- 0.4 min and 18.5 +/- 2.5 min. Thus analysis of saturation, competition, and dissociation experiments indicate that [3H]imipramine binds to low as well as high-affinity binding sites in rat cortex.  相似文献   

3.
Scrapie is a transmissible disease that results in progressive degeneration of the central nervous system and death. Although scrapie has been studied histopathologically, relatively little is known concerning neurotransmitter alterations. Specific [3H]muscimol binding to whole brain crude synaptic membranes (CSM) from mice clinically affected with scrapie was significantly (p less than 0.01) reduced, to approximately 73% of that of the controls. Of the brain regions examined, binding to only cerebral CSM was significantly (p less than 0.0001) decreased. Scatchard analyses of saturation curves revealed that the high-affinity (KD = 8 +/- 3 nM) site for muscimol was abolished in cerebral CSM from scrapie-infected mice, while the low-affinity site was unaffected. Binding of [3H]flunitrazepam to cerebral CSM was unaffected by scrapie and was stimulated by GABA to the same extent in both scrapie and control mice. These results suggest that scrapie agent 139A in C57BL/6J mice manifests a portion of its CNS pathology via a high-affinity GABA binding site that is unassociated with the benzodiazepine receptor.  相似文献   

4.
[3H]Cocaine dissociates from its binding sites in the mouse cerebral cortex with a half-time of 25 s. The dissociation kinetics in the striatum is consonant with the presence of two populations of sites with dissociation half times of 2 s and 27 s, comprising 88% and 12%, respectively, of the total binding sites. On the basis of previous pharmacological characterization of [3H]cocaine binding, we propose that the slowly dissociating component represents the sites associated with 5-hydroxytryptamine (serotonin) uptake, and the rapidly dissociating component the 3,4-dihydroxyphenylethylamine (dopamine)-related sites. Evidence is presented that the extremely high dissociation rates do not preclude the measurement of [3H]cocaine binding by rapid filtration. The dissociation of [3H]cocaine from cerebrocortical membranes is slowed to a small but statistically significant extent by serotonin.  相似文献   

5.
Kinetic studies showed that under appropriate conditions, [3H]clonidine binds to two distinct receptor sites in calf cortex membranes. At 23 degrees C, binding was obtained at a low-affinity site (dissociation constant, KD = 5.4 nM) and a high-affinity site (KD = 1.1 nM). In contrast, at 0 degree C, selective binding occurred to the low-affinity site only. Consequently, at 0 degree C, it was possible to evaluate the interaction of drugs with the low-affinity receptor directly. On the other hand, competition with the high-affinity receptor could be ascertained by generating displacement curves representing the differential between specific binding values obtained at 23 and 0 degree C. Guanine nucleotides selectively decreased binding to the high-affinity site without apparent influence on the low-affinity [3H]clonidine binding. The activities of various pharmacological agents at the low- and high-affinity clonidine receptors are discussed and compared with WB-4101 binding data.  相似文献   

6.
Abstract: [3H]Imipramine binds with high affinity to membranes from different regions of the human brain. The highest density of binding sites was observed in the hypothalamus and substantia nigra and the lowest density in the white matter and cerebellum. As found in rat brain, tricyclic antidepressant drugs are potent inhibitors of [3H]imipramine binding. Atypical antidepressants are, however, much weaker at inhibiting the specific binding. The [3H]imipramine binding site in human cortex is apparently identical to the site already described in the rat brain and in human platelets.  相似文献   

7.
The concentrations of glucose transporter in the cerebral cortex and brainstem of neonatal (4–7 days old) and adult rats were measured using [3H]cytochalasin B binding. There was significantly lower binding in neonatal cortex (1.9 ± 0.7 pmol/mg protein) compared to adult (8.9 ± 2.5 pmol/mg protein). Scatchard analysis indicates this difference is due to a lower Bmax (neonate, 9.7 pmol/mg protein; adult, 18.6 ± 1.3 pmol/mg protein). Measurement of [3H]cytochalasin B binding in microvessels prepared from cortex of adult (28.1 ± 3.5 pmol/mg protein) and neonate (12.8 ± 1.9 pmol/mg protein) indicates a lower binding in the microvasculature of neonates, whereas no such difference was seen in the binding in microvessels prepared from adult and neonatal brainstem (adult, 11.8 ± 2.3 pmol/mg protein; neonate, 9.4 ± 2.7 pmol/mg protein). In both adult and neonate brain, there is an enrichment of glucose transporters in the microvasculature.  相似文献   

8.
[3H]Quipazine was used to label binding sites in rat brain membranes that display characteristics of a 5-hydroxytryptamine3 (5-HT3) receptor. The radioligand binds with high affinity (KD, 1.2 +/- 0.1 nM) to a saturable population of sites (Bmax, 3.0 +/- 0.4 pmol/g of tissue) that are differentially located in the brain. Specific [3H]quipazine binding is not affected by guanine or adenine nucleotides. ICS 205-930, BRL 43964, Lilly 278584, and zacopride display less than nanomolar affinity for these sites whereas MDL 72222 is approximately one order of magnitude less potent. The pharmacological profile of the binding site is in excellent agreement with that of 5-HT3 receptors characterized in peripheral physiological models. We conclude that [3H]quipazine labels a 5-HT3 receptor in the rat CNS.  相似文献   

9.
Kinetic and equilibrium measurements of [3H]-serotonin (5-hydroxytryptamine) binding to human frontal cortex membranes have been made between 4 and 30 degrees C. The effects of spiperone and ascorbate on binding have also been determined. Under the conditions used, binding was saturable and reversible. Affinity constants derived from kinetic and equilibrium data were comparable. Serotonin binding to several sites had substantial enthalpic as well as entropic components.  相似文献   

10.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

11.
Abstract: Solubilization of rat striatal membranes with sodium cholate, followed by reconstitution into phospholipid vesicles, leads to a 6.5-fold increase in the agonist high-affinity binding sites of the D1 dopamine receptor. These high-affinity binding sites display differential sensitivity toward temperature. When reconstituted receptors were preincubated for 1 h at 0–4°C (on ice) or at 22°C (room temperature) followed by radioligand binding assays with dopamine, neither the high-affinity values of the receptor for dopamine nor the percent receptors in the high-affinity state (31–39%) were changed from control reconstituted receptors, which were not subject to any preincubations. At 30°C, there was a partial loss in the number of high-affinity D1 receptors with only 25% of the total receptor population in the high-affinity state; there was no change in the affinity values of the high-affinity binding sites. At 37°C, there was a 40% loss in total number of D1 receptor binding sites. All the high-affinity binding sites were lost and the remaining 60% of binding activity represented the low-affinity binding state of the receptor. These results indicate that the high-affinity binding sites of the reconstituted D1 dopamine receptors are uniquely sensitive to higher temperatures.  相似文献   

12.
High- and Low-Affinity Binding of [3H]Imipramine in Mouse Cerebral Cortex   总被引:1,自引:0,他引:1  
Binding of [3H]imipramine in mouse cerebral cortex was found to be nonhomogeneous. Competition experiments, Scatchard analysis, and Hill plots are compatible with the existence of binding with high (nanomolar) and low (micromolar) affinity. Low-affinity binding could be eliminated by the use of low concentrations of imipramine as the competing ligand. In contrast to the high-affinity binding, the low-affinity binding was found to be unrelated to the neuronal uptake system for serotonin.  相似文献   

13.
The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX), a highly selective A1 adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A1 receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [3H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [3H]DPCPX binding was the same as for guanine nucleotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., Gi, in the regulation of antagonist binding is suggested. This was confirmed by inactivation of Gi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [3H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A1 receptors for [3H]DPCPX but by an increased Bmax value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when most receptors are in a high-affinity state for agonists, only a few receptors are labeled by [3H]DPCPX. It is suggested that [3H]DPCPX binding is inhibited when receptors are coupled to Gi. Therefore, uncoupling of A1 receptors from Gi by guanine nucleotides or by inactivation of Gi with NEM results in an increased antagonist binding.  相似文献   

14.
The binding of [3H]5-hydroxytryptamine (5-HT, serotonin) to cerebellar membranes was examined after preincubation of [3H]5-HT in the presence or absence of ascorbate. The tissue preparation was identical in all experiments and consisted of rat cerebellar homogenates in Tris-HCl buffer with 0.1% ascorbate. Cerebellar membranes were used because of their low density of 5-HT1 binding sites. In the presence of ascorbate during a 4-h preincubation period, minimal specific binding of 2 nM [3H]5-HT is detected. Similar results are obtained with equimolar concentrations of other antioxidants (butylated hydroxytoluene, sodium dithionite, and sodium metabisulfite). Apparent specific binding increases 14-fold following a 4-h preincubation of [3H]5-HT in the absence of ascorbate. The increase in apparent specific [3H]5-HT binding is time-dependent and plateaus after 4-6 h of preincubation. When ascorbate is present during the 4-h preincubation, Scatchard analysis of [3H]5-HT binding reveals a KD value of 3.0 +/- 0.3 nM and a Bmax value of 1.9 +/- 0.2 pmol/g tissue. When ascorbate is absent during the preincubation, the KD is essentially unchanged at 3.6 +/- 0.1 nM but the Bmax is significantly increased to 36.5 +/- 7 pmol/g tissue. Drug competition studies reveal that the apparent specific "[3H]5-HT binding" in the absence of ascorbate appears to be displaced by nanomolar concentrations of hydroxylated tryptamines (5-HT, bufotenine) but not by nonhydroxylated tryptamines (5-methoxytryptamine, tryptamine). HPLC analysis demonstrates that [3H]5-HT is essentially destroyed by a 4-h incubation at 22 degrees C in the absence of ascorbate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Abstract: The effect of lindane administration on the specific binding of ligands to different sites on the GABAA receptor-ionophore complex was studied in the rat brain by receptor mapping autoradiography. [3H]Muscimol (Mus), [3H]flunitrazepam (Flu), and t -[35S]butylbicyclophosphorothionate (TBPS) were used as specific ligands of GABA, benzodiazepine, and picrotoxinin binding sites, respectively. Rats received a single oral dose of 30 mg/kg lindane and they were classified into two groups according to the absence or presence of convulsions. Vehicle-treated groups acted as controls. The effect of the xenobiotic on ligand binding was measured in different brain areas and nuclei 12 min or 5 h after its administration. Lindane induced a generalized decrease in [35S]TBPS binding, which was present shortly after dosing. In addition, [3H]Flu binding was increased in lindane-treated animals, this modification also appearing shortly after administration but diminishing during the studied time. Finally, lindane induced a decrease in [3H]Mus binding, which became more evident over time. These modifications were observed both in the presence and in the absence of convulsions. However, an increase in [3H]-Mus binding was detected shortly after lindane-induced convulsions. The observed decrease in [35S]TBPS binding is in agreement with the postulated action of lindane at the picrotoxinin binding site of the GABAA receptor chloride channel. The effects observed on the binding of [3H]Flu and [3H]Mus may be secondary to the action of lindane as an allosteric antagonist of the GABAA receptor.  相似文献   

16.
The binding of [3H]PK 11195 and [3H]Ro 5-4864 to membrane preparations from cerebral cortex and peripheral tissues of various species was studied. [3H]PK 11195 (0.05-10 nM) bound with high affinity to rat and calf cerebral cortical and kidney membranes. [3H]Ro 5-4864 (0.05-30 nM) also successfully labeled rat cerebral cortical and kidney membranes, but in calf cerebral cortical and kidney membranes, its binding capacity was only 3 and 4%, respectively, of that of [3H]PK 11195. Displacement studies showed that unlabeled Ro 5-4864, diazepam, and flunitrazepam were much more potent in displacing [3H]PK 11195 from rat cerebral cortex and kidney membranes than from calf tissues. The potency of unlabeled Ro 5-4864 in displacing [3H]PK 11195 from the cerebral cortex of various other species was also tested, and the rank order of potency was rat = guinea pig greater than cat = dog greater than rabbit greater than calf. Analysis of these displacement curves revealed that Ro 5-4864 bound to two populations of binding sites from rat and calf kidney and from rat, guinea pig, rabbit, and calf cerebral cortex but to a single population of binding sites from cat and dog cerebral cortex. Using [3H]PK 11195 as a ligand, the rank order of binding capacity in cerebral cortex of various species was cat greater than calf greater than guinea pig greater than rabbit greater than dog greater than rat, whereas when [3H]Ro 5-4864 was used, the rank order of binding capacity was cat greater than guinea pig greater than rat greater than rabbit greater than calf greater than dog.  相似文献   

17.
Twenty-two frontal cortices from normal human foetal brains of gestational ages ranging from 16 to 40 weeks and five postnatal brains ranging from 5 to 50 years were analysed for the ontogeny of muscarinic receptors using [3H]quinuclidinyl benzilate (QNB) as the ligand. QNB binding sites were shown to be stable up to 4 1/2 months of storage at -70 degrees C. QNB binding was characterized in frontal cortices of 28-week-old foetal brains as muscarinic receptors by the following criteria: (1) it was localised mainly in particulate fraction; (2) binding was saturable at a concentration of 1.5 nM; (3) the cholinergic antagonists atropine and scopolamine competed for the binding, with IC50 values of 1 and 0.8 nM, respectively. The agonists oxotremorine, carbachol, and pilocarpine gave IC50 values of 1, 15 and 18 microM, respectively. Nicotinic receptor ligands and noncholinergic drugs could not compete for the binding. Bimolecular association and dissociation rate constants for the reversible binding are 6.23 X 10(8) M-1 X min-1 and 2.0 X 10(-2) X min-1, respectively. The equilibrium dissociation constant is 33 pM. The KD obtained by saturation binding data is 103 pM. Ontogeny of muscarinic receptors showed three distinct phases: In phase I, they appear between 16 and 18 weeks [average concentration 109 fmol/mg protein of total particulate fraction (TPF)] and slowly increase up to 20 weeks (average concentration 147 fmol/mg protein TPF). Phase II is a lag period between 20 and 24 weeks at which time receptor concentration does not change perceptibly (average concentration (67 fmol/mg protein TPF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract: A tritiated heptapeptide, [3H]Tyr-Gly-Gly-Phe-Met-Arg-Phe ([3H]Met-enkephalin-Arg6-Phe7), with high specific radioactivity has been synthesized in order to characterize its opioid binding activity to frog brain membrane fractions. The apparent K D value of the radioligand calculated from homologous displacement experiments was 3.4 n M , and the maximal number of specific binding sites was 630 fmol/mg of protein. The K D determined from equilibrium saturation binding studies was found to be 3.6 n M . However, the Hill coefficient was far below unity ( n H = 0.43), which suggests the presence of a second, lower affinity binding site. The presence of this binding component is strengthened by the displacement experiments performed with levorphanol and some other ligands. It is assumed that the lower affinity site has no opiate character. The rank order of potency of the applied ligands in competing reversibly with [3H]Met-enkephalin-Arg6-Phe7 binding reflects a κ2- and/or δ-subtype specificity of the heptapeptide. Binding to a κ1 and/or μ site of opioid receptors is excluded, but the existence of a novel endogenous opiate receptor subtype for Met-enkephalin-Arg6-Phe7 in frogs cannot be ruled out. The [3H]Met-enkephalin-Arg6-Phe7 binding was inhibited by both sodium ions and GppNHp, which suggests the opioid agonist character of the heptapeptide.  相似文献   

19.
Abstract: In the present study, we investigated the existence of a binding site for l -carnitine in the rat brain. In crude synaptic membranes, l -[3H]carnitine bound with relatively high affinity (KD = 281 nM) and in a saturable manner to a finite number (apparent Bmax value = 7.3 pmol/mg of protein) of binding sites. Binding was reversible and dependent on protein concentration, pH, ionic strength, and temperature. Kinetic studies revealed a Koff of 0.018 min?1 and a Kon of 0.187 × 10?3 min?1 nM?1. Binding was highest in spinal cord, followed by medulla oblongata-pons ≥ corpus striatum ≥ cerebellum = cerebral cortex = hippocampus = hypothalamus = olfactory bulb. l -[3H]Carnitine binding was stereoselective for the l -isomers of carnitine, propionylcarnitine, and acetylcarnitine. The most potent inhibitor of l -[3H]carnitine binding was l -carnitine followed by propionyl-l -carnitine. Acetyl-l -carnitine and isobutyryl-l -carnitine showed an affinity ~500-fold lower than that obtained for l -carnitine. The precursor γ-butyrobetaine had negligible activity at 0.1 mM. l -Carnitine binding to rat crude synaptic membrane preparation was not inhibited by neurotransmitters (GABA, glycine, glutamate, aspartate, acetylcholine, dopamine, norepinephrine, epinephrine, 5-hydroxytryptamine, histamine) at a final concentration of 0.1 mM. In addition, the binding of these neuroactive compounds to their receptors was not influenced by the presence of 0.1 mMl -carnitine. Finally, a subcellular fractionation study showed that synaptic vesicles contained the highest density of l -carnitine membrane binding sites whereas l -carnitine palmitoyltransferase activity was undetectable, thus excluding the possibility of the presence of an active site for carnitine palmitoyltransferase. This finding indicated that the localization of the l -[3H]carnitine binding site should be essentially presynaptic.  相似文献   

20.
Abstract The binding of [3H]aspartate and [3H]glutamate to membranes prepared from frozen human cerebellar cortex was studied. The binding sites differed in their relative proportions, their inhibition by amino acids and analogues, and by the effects of cations. A proportion (about 30%) of [3H]glutamate binding was to sites similar to those labelled by [3H]aspartate. An additional component of [3H]gluta-mate binding (about 50%) was displaced by quisqualate and aL-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and may represent a “quisqualate-preferring” receptor. Neither N-methyl-d-aspartic acid-sensitive nor dl-2-amino-4-phosphonobutyric acid-sensitive [3H]glutamate binding was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号