首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the cell activation-dependent redistribution of the intracellular granule membrane protein GMP-140 of human endothelial cells. By dual-label immunofluorescence, the distribution of GMP-140 within cultured human umbilical vein endothelial cells was found to coincide with the distribution of von Willebrand factor (vWF), suggesting that GMP-140 is located in the membranes of vWF-containing storage granules. Stimulation of vWF secretion resulted in an increase in GMP-140 on the cell surface, as detected by increased binding of the monoclonal antibody S12 which recognizes the extracytoplasmic domain of GMP-140. For each agonist tested (histamine, thrombin, phorbol 12-myristate 13-acetate, and the calcium ionophore A23187) a dose-dependent redistribution of GMP-140 to the endothelial surface was observed which closely paralleled the dose-dependent secretion of vWF into the cell supernatant. When cells were maximally stimulated by histamine in the presence of antibody S12, a 4-fold increase in S12 uptake by the cells was observed. This increase occurred rapidly and reached a plateau by 10 min. In contrast, when histamine-stimulated cells were first fixed with paraformaldehyde or chilled to 4 degrees C before addition of antibody S12, only a transient increase in cell surface GMP-140 was detected. Under these conditions of arrested membrane turnover during antibody binding, cell surface GMP-140 was maximal 3 min after histamine stimulation and then declined to control levels by 20 min. These data suggest that stimulated secretion of vWF from endothelial cells entails fusion of vWF-containing storage granules with the plasma membrane. Once inserted into the plasma membrane, GMP-140 is subsequently removed from the endothelial surface, most likely by an endocytic mechanism.  相似文献   

2.
Transbilayer migration of membrane phospholipid arising from membrane insertion of the terminal human complement proteins has been investigated. Asymmetric vesicles containing pyrene-labeled phosphatidylcholine (pyrenePC) concentrated in the inner monolayer were prepared by outer monolayer exchange between pyrenePC-containing large unilamellar vesicles and excess (unlabeled) small unilamellar vesicles, using bovine liver phosphatidylcholine-specific exchange protein. After depletion of pyrenePC from the outer monolayer, the asymmetric large unilamellar vesicles were isolated by gel filtration and exposed to the purified C5b-9 proteins at 37 degrees C. Transbilayer exchange of phospholipid between inner and outer monolayers during C5b-9 assembly was monitored by changes in pyrene excimer and monomer fluorescence. Membrane deposition of the C5b67 complex (by incubation with C5b6 + C7) caused no change in pyrenePC fluorescence. Addition of C8 to the C5b67 vesicles resulted in a dose-dependent decrease in the excimer/monomer ratio. This change was observed both in the presence and absence of complement C9. No change in fluorescence was observed for control vesicles exposed to C8 (in the absence of membrane C5b67), or upon C5b-9 addition to vesicles containing pyrenePC symmetrically distributed between inner and outer monolayers. These data suggest that a transbilayer exchange of phospholipid between inner and outer monolayers is initiated upon C8 binding to C5b67. The fluorescence data were analyzed according to a "random walk" model for excimer formation developed for the case where pyrenePC is asymmetrically distributed between lipid bilayers. Based on this analysis, we estimate that a net transbilayer migration of approximately 1% of total membrane phospholipid is initiated upon C8 binding to C5b67. The potential significance of this transbilayer exchange of membrane phospholipid to the biological activity of the terminal complement proteins is considered.  相似文献   

3.
The functional and conformational activation of cell surface glycoproteins IIb-IIIa (GPIIb-IIIa) was probed in platelets stimulated to secrete by complement proteins C5b-9. Gel-filtered human platelets exposed to the purified human C5b-9 proteins exhibited non-lytic secretory release of both alpha- and dense granule storage pools with only a small increase in total binding of 125I-fibrinogen (less than 3000 molecules/cell) to the cell surface. By contrast to ADP- or thrombin-activated platelets, increased 125I-fibrinogen bound to C5b-9 platelets was not inhibited by Arg-Gly-Asp-containing peptides, suggesting that the high affinity membrane receptor for fibrinogen is not expressed under these conditions. C5b-9-stimulated platelets also failed to bind 125I-von Willebrand factor (less than 1 ng/10(8) platelets), confirming that the adhesive protein receptor function of cell surface GPIIb-IIIa is not expressed in these cells. Although specific binding of 125I-fibrinogen or 125I-von Willebrand factor did not significantly increase after C5b-9 assembly, these proteins elicited de novo expression of the GPIIb-IIIa activation-associated epitope recognized by monoclonal antibody PAC-1, and binding of this antibody to C5b-9 platelets was fully competed by Arg-Gly-Asp-containing peptides. These data suggest that the metabolic events which trigger granule secretion after C5b-9 insertion into the plasma membrane cause cell surface GPIIb-IIIa to be expressed in an activation-associated but functionally incompetent conformation.  相似文献   

4.
Assembly of the terminal complement proteins C5b-9 on human endothelial cells results in increased cytosolic calcium and nonlytic secretion of high molecular weight multimers of von Willebrand factor from intracellular storage granules. We now demonstrate that this C5b-9-induced secretory response is accompanied by vesiculation of membrane particles from the endothelial surface which express binding sites for factor Va and support prothrombinase activity. Exposure of factor Va binding sites after C5b-9 assembly was accompanied by greater than 2-fold increase in prothrombinase activity, which was not observed for cells exposed to C5b-8 (in the absence of C9). By contrast, only a 3-16% increase in prothrombinase activity was observed when these cells were maximally stimulated to secrete by either histamine, thrombin, or the Ca2+ ionophore A23187. Increased prothrombinase activity after C5b-9 was not accompanied by a change in thrombomodulin activity, and was unrelated to cell lysis, the complement-treated cells remaining greater than 99% viable. Endothelial prothrombinase activity was predominately associated with small membrane vesicles (less than 1 microns diameter) released from the cell monolayer. Analysis by fluorescence-gated flow cytometry revealed that these vesicles incorporate the C5b-9 proteins and express binding sites for factor Va. The capacity of the C5b-9 proteins to induce vesiculation of the endothelial plasma membrane and thereby expose catalytic surface for the prothrombinase enzyme complex may contribute to fibrin deposition associated with immune endothelial injury.  相似文献   

5.
GMP-140 is an integral membrane glycoprotein of apparent Mr = 140,000 located in secretory storage granules of platelets and vascular endothelial cells. When these cells are activated, GMP-140 redistributes from the membrane of the granules to the plasma membrane. To gain insight into the potential function of GMP-140, we examined aspects of its structure and biosynthesis. The amino acid composition of platelet GMP-140 revealed elevated numbers of cystinyl (6.1%), prolinyl (7.2%), and tryptophanyl (2.1%) residues. GMP-140 contained 28.8% carbohydrate by weight, distributed among N-acetylneuraminic acid, neutral sugar, and N-acetylglucosamine residues. Enzymatic removal of N-linked oligosaccarides reduced the protein's apparent Mr by more than 50,000. The biosynthesis of GMP-140 in HEL cells, which share biochemical features with megakaryocytes, was studied by pulse-chase labeling with [35S]cysteine followed by immunoprecipitation. HEL cells synthesized a heterogeneous GMP-140 precursor of 98-125 kDa which converted to a mature 140-kDa form within 40-60 min. Removal of high mannose oligosaccarides by endo-beta-N-acetylglucosaminidase H treatment reduced the apparent Mr of the precursor but not the mature protein. Tunicamycin-treated HEL cells synthesized three to four precursors of 80-92 kDa, suggesting the possibility of heterogeneity of GMP-140 at the protein level. Exposure of activated platelets to proteases followed by Western blotting indicated that most of the mass of GMP-140 was located on the extracytoplasmic side of the membrane. Our studies indicate that GMP-140 is a cysteine-rich, heavily glycosylated protein with a large extracytoplasmic domain. These features are compatible with a receptor function for the molecule when it is exposed on the surface of activated platelets and endothelial cells.  相似文献   

6.
In the passive Heymann nephritis (PHN) model of membranous nephropathy, complement C5b-9 induces glomerular epithelial cell (GEC) injury, proteinuria, and activation of cytosolic phospholipase A(2) (cPLA(2)). This study addresses the role of endoplasmic reticulum (ER) stress proteins (bip, grp94) in GEC injury. GEC that overexpress cPLA(2) (produced by transfection) and "neo" GEC (which expresses cPLA(2) at a lower level) were incubated with complement (40 min), and leakage of constitutively expressed bip and grp94 from ER into cytosol was measured to monitor ER injury. Greater leakage of bip and grp94 occurred in complement-treated GEC that overexpress cPLA(2), as compared with neo, implying that cPLA(2) activation perturbed ER membrane integrity. After chronic incubation (4-24 h), C5b-9 increased bip and grp94 mRNAs and proteins, and the increases were dependent on cPLA(2). Expression of bip-antisense mRNA reduced stimulated bip protein expression and enhanced complement-dependent GEC injury. Glomerular bip and grp94 proteins were up-regulated in proteinuric rats with PHN, as compared with normal control. Pretreatment of rats with tunicamycin or adriamycin, which increase ER stress protein expression, reduced proteinuria in PHN. Thus, C5b-9 injures the ER and enhances ER stress protein expression, in part, via activation of cPLA(2). ER stress protein induction is a novel mechanism of protection from complement attack.  相似文献   

7.
We have investigated the composition and function of membrane microparticles released from platelets exposed to the C5b-9 proteins of the complement system. Gel-filtered human platelets were incubated with sub-lytic amounts of the purified C5b-9 proteins and the distribution of surface antigens was analyzed using monoclonal antibodies and flow cytometry. C5b-9 assembly caused secretory fusion of the alpha-granule membrane with the plasma membrane and the release of membrane vesicles (approximately 0.1-micron diameter) that contained the plasma membrane glycoproteins (GP) GP Ib and GP IIb-IIIa as well as the alpha-granule membrane protein GMP-140. These microparticles were highly enriched in the C9 neoantigen of the C5b-9 complex. The apparent surface density of C5b-9 on the microparticles was approximately 10(3)-fold higher than on the platelet itself, suggesting that the vesicles were selectively shed from the plasma membrane at the site of C5b-9 insertion. C5b-9 induced the expression of an activation-dependent epitope (recognized by monoclonal antibody, PAC1) in GP IIb-IIIa on the platelet surface but not in GP IIb-IIIa on the microparticles. The surface of the microparticles was also highly enriched in alpha-granule-derived coagulation factor V (or Va), accounting for nearly half of all the membrane-bound factor V detected. The number of potential membrane binding sites for factor Va was probed by adding saturating concentrations of factor Va light chain. Under these conditions, the density of factor Va binding sites on the microparticle surface exceeded that on the C5b-9-treated platelet by three to four orders of magnitude. Moreover, the microparticles provided most of the membrane surface for conversion of prothrombin to thrombin by VaXa. These studies demonstrate that the microparticles shed by C5b-9-treated platelets (and not the platelets themselves) provide the principal binding sites for coagulation factor Va and the principal catalytic surface for the prothrombinase complex. Platelet-derived microparticles formed during complement activation in vivo could provide a membrane surface that facilitates the assembly and dissemination of procoagulant enzyme complexes.  相似文献   

8.
G I Johnston  R G Cook  R P McEver 《Cell》1989,56(6):1033-1044
GMP-140 is an integral membrane glycoprotein found in secretory granules of platelets and endothelial cells. After cellular activation, it is rapidly redistributed to the plasma membrane. The cDNA-derived primary structure of GMP-140 predicts a cysteine-rich protein with multiple domains, including a "lectin" region, an "EGF" domain, nine tandem consensus repeats related to those in complement-binding proteins, a transmembrane domain, and a short cytoplasmic tail. Some cDNAs also predict a soluble protein with a deleted transmembrane segment. The domain organization of GMP-140 is similar to that of ELAM-1, a cytokine-inducible endothelial cell receptor that binds neutrophils. This similarity suggests that GMP-140 belongs to a new family of inducible receptors with related structure and function on vascular cells.  相似文献   

9.
Membrane assembly of the C5b-9 proteins on gel-filtered human platelets has been shown to initiate the nonlytic release of alpha-granule contents and expression of membrane prothrombinase sites, suggesting cellular activation by these ostensibly cytolytic plasma proteins (Wiedmer, T., Esmon, C. T., and Sims, P. J. (1986) J. Biol. Chem. 261, 14587-14592). We now examine the mechanism of the C5b-9-induced release reaction. The release of alpha-granule contents upon C5b-9 assembly is accompanied by expression of alpha-granule membrane glycoprotein 140 on the platelet surface, confirming that the complement-mediated release reaction occurs by secretory fusion of the alpha-granule with the plasma membrane. C5b-9 binding initiates the phosphorylation of both 40- and 20-kDa platelet proteins, indicative of activation of protein kinase C and myosin light chain kinase, respectively. Activation of cellular protein kinases under these conditions was not accompanied by the formation of inositol phosphates and was found to strictly depend upon extracellular Ca2+, suggesting that the platelet's secretory response to the C5b-9 proteins is triggered directly by the influx of Ca2+ across the plasma membrane. measurement of intracellular Ca2+ confirmed that elevation of this ion in the cytosol was strictly dependent upon increased plasma membrane permeability due to C5b-9 assembly and was not accompanied by mobilization of this ion from internal storage pools. The C5b-9-mediated secretory response was blocked by sphingosine, a potent inhibitor of protein kinase C, but was unaffected by the cyclooxygenase inhibitor indomethacin, suggesting that feedback (receptor-linked) by thromboxane is not required for platelet activation after C5b-9 insertion.  相似文献   

10.
The time- and concentration-dependent binding of von Willebrand factor to fibrillar collagen was examined by following the disappearance from plasma of ristocetin cofactor activity and factor VIII-related antigen, the functional and immunologic determinants of von Willebrand factor. Examination of both bound and unbound factor VIII-related antigen by crossed immunoelectrophoresis revealed a preferential binding of the higher molecular weight forms of von Willebrand factor to fibrillar collagen.  相似文献   

11.
Regulated secretion of EC (endothelial cell) vWF (von Willebrand factor) is part of the haemostatic response. It occurs in response to secretagogues that raise intracellular calcium or cAMP. Statins are cholesterol-lowering drugs used for the treatment of cardiovascular disease. We studied the effect of fluvastatin on regulated secretion of vWF from HUVEC (human umbilical-vein ECs). Secretion in response to thrombin, a protease-activated receptor-1 agonist peptide, histamine, forskolin and adrenaline (epinephrine) was inhibited. This inhibition was reversed by mevalonate or geranylgeranyl pyrophosphate, and mimicked by a geranylgeranyl transferase inhibitor, demonstrating that the inhibitory mechanism includes inhibition of protein geranylgeranylation. To investigate this mechanism further, calcium handling and NO (nitric oxide) regulation were studied in fluvastatin-treated HUVEC. Intracellular calcium mobilization did not correlate with vWF secretion. Fluvastatin increased eNOS [endothelial NOS (NO synthase)] expression, but NOS inhibitors failed to reverse the effect of fluvastatin on vWF secretion. Exogenous NO did not inhibit thrombin-induced vWF secretion. Many small GTPases are geranylgeranylated and some are activated by secretagogues. We overexpressed DN (dominant negative) Rho GTPases, RhoA, Rac1 and Cdc42 (cell division cycle 42), in HUVEC. DNCdc42 conferred inhibition of thrombin- and forskolin-induced vWF secretion. We conclude that, via inhibition of protein geranylgeranylation, fluvastatin is a broadspectrum inhibitor of regulated vWF secretion. Geranylgeranylated small GTPases with functional roles in regulated secretion, such as Cdc42, are potential targets for the inhibitory activity of fluvastatin.  相似文献   

12.
The terminal, membrane-derived C5b-9 complex of human complement (C) is an apparently hollow, cylindrical macromolecule vertically oriented on the target membrane. In the present study, an antiserum to the complex has been used to probe its immunobiochemical properties. "Neoantigenic" determinants characteristic of the complex have been detected, which are absent on native C5-C9 molecules. Evidence that the C5b-9 complex is an amphiphilic molecule that possesses apolar, detergent-binding surfaces has been obtained by using charge-shift crossed immunoelectrophoresis, and by direct demonstration of Triton X-100 binding to the complex in quantitative immunoelectrophoresis. By the same criteria, serum C5, C6, and C9 are hydrophilic molecules. The results indicate that assembly of C5-C9 into the terminal membrane C5b-9 complex is accompanied by conformational changes in the individual C components that lead to the exposure of apolar molecular regions in the complex. It is proposed that this constitutes the basis for the lipid-binding properties of the macromolecule, which enable it to become inserted into biologic and artificial lipid membranes with apparent generation of a transmembrane pore.  相似文献   

13.
14.
Monoclonal and polyclonal antibodies have been developed that recognize a 140 kD glycoprotein on the plasma membrane of activated, but not unstimulated, platelets. This glycoprotein is found in resting platelets as an alpha-granule membrane protein and has therefore been named GMP-140. After thrombin stimulation, alpha-granules fuse with the surface-connected canalicular system and GMP-140 is redistributed to the plasma membrane. In the present study, we immunolabeled unstimulated and activated human platelets and analyzed the distribution of GMP-140 over broad expanses of the plasma membrane using surface replication techniques. Fixed platelets were allowed to settle onto poly-L-lysine-coated coverslips and immunolabeled with polyclonal anti-GMP-140, followed by protein A gold. After critical-point drying, rotary-shadowed surface replicas were made. GMP-140 was not present on the surfaces of unstimulated platelets, but thrombin stimulation resulted in the massive expression of GMP-140 on the cell surface, with the immunogold label monodispersed. In contrast, we recently found that GPIIb-IIIa, the fibrinogen receptor, is monodispersed on unstimulated platelets and clustered on activated platelets. Although GMP-140's hemostatic function is unknown, its monodispersed surface pattern implies significant differences form GPIIb-IIIa with respect to ligand binding and/or cytoskeletal interaction.  相似文献   

15.
The time course for cell surface loss of von Willebrand factor (VWF) and the propolypeptide of VWF (proregion) following exocytosis of individual Weibel-Palade bodies (WPBs) from single human endothelial cells was analyzed. Chimeras of enhanced green fluorescent protein (EGFP) and full-length pre-pro-VWF (VWF-EGFP) or the VWF propolypeptide (proregion-EGFP) were made and expressed in human umbilical vein endothelial cells. Expression of VWF-EGFP or proregion-EGFP resulted in fluorescent rod-shaped organelles that recruited the WPB membrane markers P-selectin and CD63. The WPB secretagogue histamine evoked exocytosis of these fluorescent WPBs and extracellular release of VWF-EGFP or proregion-EGFP. Secreted VWF-EGFP formed distinctive extracellular patches of fluorescence that were labeled with an extracellular antibody to VWF. The half-time for dispersal of VWF-EGFP from extracellular patches was 323.5 +/- 146.2 s (+/-S.D., n = 20 WPBs). In contrast, secreted proregion-EGFP did not form extracellular patches but dispersed rapidly from its site of release. The half-time for dispersal of proregion-EGFP following WPB exocytosis was 2.98 +/- 1.88 s (+/-S.D., n = 32 WPBs). The slow rate of loss of VWF-EGFP is consistent with the adhesive nature of this protein for the endothelial membrane. The much faster rate of loss of proregion-EGFP indicates that this protein does not interact strongly with extracellular VWF or the endothelial membrane and consequently may not play an adhesive role at the endothelial cell surface.  相似文献   

16.
Because our previous studies (Snell, W.J., and W.S. Moore, 1980, J. Cell Biol. 84:203- 210) on the mating reaction of chlamydomonas reinhardtii showed that there was an adhesion-induced turnover of proteins whose synthesis is induced during aggregation. Analysis by SDS PAGE and autoradiography showed that proteins of 220,000 M(r) and 165, 000 M(r) (designated A(1) and A(2) respectively) consistently showed a high rate of synthesis only in flagella or flagellar membrane-enriched fractions prepared from aggregating gametes. Since the two proteins were soluble in the non-ionic detergent NP-40 and were removed from intact cells by a brief pronase treatment, it is likely that A(1) and A(2) are membrane proteins expose on the cell surface. A(1) and A(2) were each synthesized by gametes of both mating types (mt(-) and mt(+)) and synthesis of these two proteins could be detected in the normal mating reaction (wild type mt(-) and mt(+)), in mixtures of mt(-) and impotent mt(+) gametes (which could aggregate but not fuse), and in mixtures of gametes of a single mating type with isolated flagella of the opposite mating type. Cells aggregating in tunicamycin, an inhibitor of protein glycosylation, lost their adhesiveness during aggregation and did not synthesize the 220,000 M(r) protein but instead produced a protein (possibly an underglycosylated form of A(1)) of slightly lower mol wt. The 220,000 and 165,000 M(R) proteins appeared to be flagellar proteins and not cell wall proteins because A(1) and A(2) did not co-migrate with previously identified cell wall proteins, and synthesis of the two proteins could not be detected in flagella-less (bald-2) mutant cells. Analysis of the adhesive activity of sucrose gradient fraction of detergent (octyl glucoside)-solubilized flagellar membranes revealed that fractions containing A(1) and A(2) did not have detectable adhesive activity. The possibility remains that A(1) and A(2) are adhesion molecules whose activity could not be measured in the assay we used. Alternatively, the 220,000 and 165,000 M(r) proteins may be inactivated adhesion molecules or else they may be flagellar surface proteins involved only indirectly in the adhesion process.  相似文献   

17.
Previous studies have demonstrated that in general, nucleated cells are more resistant to killing by serum complement than are erythrocytes. During studies aimed at defining the mechanisms of nucleated cell resistance, we found that the human histiocytic cell line U937 was easily lysed by homologous serum. U937 cells were also killed by serum depleted of C9, but not by serum depleted of C8, implying that the C5b-8 complex was sufficient to cause lysis of these cells. Enumeration of complexes on the cell surface demonstrated that approximately 40-fold more complexes were required to lyse U937 cells in the absence of C9 than in the presence of an excess of C9. Examination of the effects of small amounts of C9 on lysis of U937 cells by the C5b-8 complex demonstrated that at very low doses, C9 inhibited C5b-8 mediated lysis. The use of radiolabeled anti-C8 antibody showed that C5b-8 complexes were eliminated from the surface of U937 cells at 37 degrees C, and C9 at the dose causing inhibition of lysis accelerated the elimination of complexes. These results suggest that the increased lytic potential resulting from binding of small amounts of C9 to C5b-8 complexes is outweighed by enhanced elimination of complexes resulting in decreased cell death.  相似文献   

18.
The carbocyanine dye 3,3'-dipropylthiodicarbocyanine iodide has been used to investigate changes in membrane potential (Em) which occur upon binding of complement proteins C5b-9 to the plasma membrane of blood platelets. Gel-filtered platelets exposed to C5b6 and C7 in serum-free medium show no change in Em from that of controls, as indicated by either 3,3,'-dipropylthiodicarbocyanine iodide fluorescence or by the distribution of [14C]tetraphenylphosphonium bromide. Addition of complement proteins C8 and C9 to the C5b67 platelets results in partial depolarization of Em, which spontaneously repolarizes to basal levels within 15-20 min at 37 degrees C. Under these conditions, C5b-9-treated platelets show no increase in lysis over complement-free controls. Isotonic replacement of external sodium by either potassium or choline alters both the rate and extent of membrane depolarization and inhibits the platelets' capacity to repolarize after C5b-9 assembly. Repolarization of Em to basal levels is also completely blocked by addition of ouabain, confirming that this recovery is mediated by the plasma membrane Na+/K+ pump. These results demonstrate that membrane binding of the C5b-9 proteins can induce a transient change in Em when bound to the plasma membrane at a sublytic concentration, providing a mechanism for target cell activation by these potentially cytolytic proteins.  相似文献   

19.
Using a model of rat membranous nephropathy (MN), we examined the relationship between the development of glomerular epithelial cell injury and the formation and stability of the membrane attack complex (MAC) of complement. Isolated rat kidneys were perfused with buffered bovine albumin (BSA) or various plasmas (complement source). Kidneys containing nephritogenic amounts of complement-fixing sheep antibody to glomerular epithelial antigens (aFx1A) perfused with BSA (n = 5), and normal kidneys perfused with normal human plasma in BSA (50% v/v, n = 6) excreted 0.30 +/- 0.02 mg protein/min/g during 90 min perfusion (control groups). When normal plasma was added to the perfusate of aFx1A kidneys at concentrations of 12.5, 25, and 50% v/v, protein excretion rose in a time- and concentration-dependent manner. Perfusions with 25% plasma resulted in baseline proteinuria from 0 to 20 min that increased to 2.8 +/- 0.9 mg/min/g at 20 to 40 min and 8.6 +/- 2.1 at 40 to 60 min (n = 4, p less than 0.01 vs control groups). Removal of plasma at 20 min did not prevent this rise in protein excretion (3.9 +/- 2.4 and 5.8 +/- 2.6 mg/min/g at 30 to 40 and 55 to 65 min respectively, p less than 0.01, n = 4). Perfusion of aFx1A kidneys with C8-deficient (C8D) human plasma (25% v/v, n = 4) or C6D rabbit serum (25% v/v, n = 2) independently produced low levels of proteinuria comparable with BSA, but in combination, the two reagents restored enhanced protein excretion (n = 2). In aFx1A kidneys containing C5b-7, addition of C8 and C9 (C6D serum) after intervals of 20, 60, or 90 min immediately reconstituted heavy proteinuria. Thus, the magnitude of MAC-induced glomerular epithelial injury in rat MN is related to the complement dose. Altered glomerular permeability is delayed with respect to the onset of complement activation. Once sufficient C5b-9 is formed, proteinuria can develop despite cessation of new MAC assembly, implying that C5b-9 persists after formation. Moreover, the C5b-7 MAC intermediate is not eliminated rapidly in this model.  相似文献   

20.
Summary The fluorescent potentiometric indicator diS–C3-(5) has been used to investigate changes in membrane potential due to assembly of the C5b-9 membrane attack complex of the complement system. EAC1-7 human red blood cells and resealed erythrocyte ghosts—bearing membrane-assembled C5b67 complexes—were generated by immune activation in C8-deficient human serum. Studies performed with these cellular intermediates revealed that the membrane potential of EAC1-7 red cells and ghosts is unchanged from control red cells (–7 mV) and ghosts (0 mV), respectively. Addition of complement proteins C8 and C9 to EAC1-7 red cells results in a dose-dependent depolarization of membrane potential which precedes hemolysis. This prelytic depolarization of membrane potential—and the consequent onset of hemolysis—is accelerated by raising external [K+], suggesting that the diffusional equilibration of transmembrane cation gradients is rate limiting to the cytolytic event. In the case of EAC1-7 resealed ghosts suspended at either high external [K+] or [Na+], no change in membrane potential (from 0 mV) could be detected after C8/C9 additions. When the membrane potential of the EAC1-7 ghost was displaced from 0 mV by selectively increasing the K+ conductance with valinomycin, a dose-dependent depolarization of the membrane was observed upon addition of C8 and C9. In these experiments, lytic breakdown of the ghost membranes was <5%. Conclusions derived from this study include: (i) measured prelytic depolarization of the red cell Donnan potential directly confirms the colloid-osmotic theory of immune cytolysis. (ii) The diffusional transmenbrane equilibration of Na+ and K+ through the C5b-9 pore results in a dose-dependent depolarization of the membrane potential (E m ) which appears to be rate-limiting to cytolytic rupture of the target erythrocyte. (iii) Enhanced immune hemolysis observed in high K+ media cannot be attributed to cation-selective conductance across the C5b-9 pore, and is probably related to the nearequilibrium condition of potassium-containing red cells when suspended at high external K+. These experiments demonstrate that carbocyanine dye fluorescent indicators can be used to monitor electrochemical changes arising from immune damage to the plasma membrane under both cytolytic and noncytolytic conditions. Potential application of this method to the detection of sublytic pathophysiological changes in the plasma membrane of complement-damaged cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号