首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pseudomonas aeruginosa FpvA receptor is a TonB-dependent outer membrane transport protein that catalyzes uptake of ferric pyoverdin across the outer membrane. Surprisingly, FpvA expressed in P. aeruginosa grown in an iron-deficient medium copurifies with a ligand X that we have characterized by UV, fluorescence, and mass spectrometry as being iron-free pyoverdin (apo-PaA). PaA was absent from FpvA purified from a PaA-deficient P. aeruginosa strain. The properties of ligand binding in vitro revealed very similar affinities of apo-PaA and ferric-PaA to FpvA. Fluorescence resonance energy transfer was used to study in vitro the formation of the FpvA-PaA-Fe complex in the presence of PaA-Fe or citrate-Fe. The circular dichroism spectrum of FpvA indicated a 57% beta-structure content typical of porins and in agreement with the 3D structures of the siderophore receptors FhuA and FepA. In the absence of the protease's inhibitors, a truncated form of FpvA lacking 87 amino acids at its N-terminus was purified. This truncated form still bound PaA, and its beta-sheet content was conserved. This N-terminal region displays significant homology to the N-terminal periplasmic extensions of FecA from Escherichia coli and PupB from Pseudomonas putida, which were previously shown to be involved in signal transduction. This suggests a similar function for FpvA. The mechanism of iron transport in P. aeruginosa via the pyoverdin pathway is discussed in the light of all these new findings.  相似文献   

2.
To acquire iron, Pseudomonas aeruginosa secretes the fluorescent siderophore pyoverdine (Pvd), which chelates iron and shuttles it into the cells via the specific outer membrane transporter FpvA. We studied the role of iron and other metals in the binding and transport of Pvd by FpvA and conclude that there is no significant affinity between FpvA and metal-free Pvd. We found that the fluorescent in vivo complex of iron-free FpvA-Pvd is in fact a complex with aluminum (FpvA-Pvd-Al) formed from trace aluminum in the growth medium. When Pseudomonas aeruginosa was cultured in a medium that had been treated with a metal affinity resin, the in vivo formation of the FpvA-Pvd complex and the recycling of Pvd on FpvA were nearly abolished. The accumulation of Pvd in the periplasm of Pseudomonas aeruginosa was also reduced in the treated growth medium, while the addition of 1 microM AlCl(3) to the treated medium restored the effects of trace metals observed in standard growth medium. Using fluorescent resonance energy transfer and surface plasmon resonance techniques, the in vitro interactions between Pvd and detergent-solubilized FpvA were also shown to be metal dependent. We demonstrated that FpvA binds Pvd-Fe but not Pvd and that Pvd did not compete with Pvd-Fe for FpvA binding. In light of our finding that the Pvd-Al complex is transported across the outer membrane of Pseudomonas aeruginosa, a model for siderophore recognition based on a metal-induced conformation followed by redox selectivity for iron is discussed.  相似文献   

3.
The pyoverdine outer membrane receptor, FpvA, from Pseudomonas aeruginosa translocates ferric pyoverdine across the outer membrane through an energy consuming mechanism using the proton motive force and the TonB-ExbB-ExbD energy transducing complex from the inner membrane. We solved the crystal structure of the full-length FpvA bound to iron-pyoverdine at 2.7 A resolution. Signal transduction to an anti-sigma protein of the inner membrane and to TonB-ExbB-ExbD involves the periplasmic domain, which displays a beta-alpha-beta fold composed of two alpha-helices sandwiched by two beta-sheets. One iron-pyoverdine conformer is bound at the extracellular face of FpvA, revealing the conformer selectivity of the binding site. The loop that contains the TonB box, involved in interactions with TonB, and connects the signaling domain to the plug domain of FpvA is not defined in the electron density following the binding of ferric pyoverdine. The high flexibility of this loop is probably necessary for signal transduction through the outer membrane.  相似文献   

4.
Under iron limitation, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin, which, after complexing iron, is transported back into the cell via its outer membrane receptor FpvA. Previous studies demonstrated co-purification of FpvA with iron-free PaA and reported similar binding affinities of iron-free pyoverdin and ferric-pyoverdin to purified FpvA. The fluorescence resonance energy transfer between iron-free PaA and the FpvA receptor here reveals the existence of an FpvA-pyoverdin complex in P. aeruginosa in vivo, suggesting that the pyoverdin-loaded FpvA is the normal state of the receptor in the absence of iron. Using tritiated ferric-pyoverdin, it is shown that iron-free PaA binds to the outer membrane but is not taken up into the cell, and that in vitro and, presumably, in vivo ferric-pyoverdin displaces the bound iron-free pyoverdin on FpvA-PaA to form FpvA-PaA-Fe complexes. In vivo, the kinetics of formation of this FpvA-PaA-Fe complex are more than two orders of magnitude faster than in vitro and depend on the presence of TonB. In P. aeruginosa, two tonB genes have been identified (tonB1 and tonB2). TonB1 is directly involved in ferric-pyoverdin uptake, and TonB2 seems to be able partially to replace TonB1 in its role in iron acquisition. However, no effect of TonB1 or TonB2 on the apparent affinity of free pyoverdin to FpvA was observed, and a 17-fold difference was measured between the affinities of the two forms of pyoverdin (PaA and PaA-Fe) to FpvA in the absence of TonB1 or TonB2. The mechanism of iron uptake in P. aeruginosa via the pyoverdin pathway is discussed in view of these new findings.  相似文献   

5.
Pyoverdine (PVD) is the major siderophore produced by Pseudomonas aeruginosa for iron acquisition. PvdRT-OpmQ is an ATP-dependent efflux pump involved in the secretion of newly synthesized pyoverdine (PVD) and of PVD that has transported and released its iron into the bacterium from the periplasm into the extracellular medium. This iron uptake pathway also involves an outer membrane transporter, FpvA, for PVD-Fe uptake from the extracellular medium into the periplasm. In binding assays, FpvA bound PVD in complex with many different metals, with affinities from 2.9?nM for PVD-Fe to 13?μM for PVD-Al. Uptake assays with various FpvA and PvdRT-OpmQ mutants, monitored by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for metal detection, and by fluorescence for PVD detection, showed that both metals and PVD accumulated in P.?aeruginosa, due to the uptake of these compounds via the FpvA/PVD pathway. Higher levels of accumulation were observed in the absence of PvdRT-OpmQ expression. Thus, FpvA has a broad metal specificity for both the binding and uptake of PVD-metal complexes, and the PvdRT-OpmQ efflux pump exports unwanted metals complexed with PVD from the bacterium. This study provides the first evidence of efflux pump involvement in the export of unwanted siderophore-metal complexes and insight into the molecular mechanisms involved controlling the metal selectivity of siderophore-mediated iron uptake pathways.  相似文献   

6.
Pseudomonas aeruginosa is one of the most significant opportunistic bacterial pathogens in humans causing infections and premature death in patients with cystic fibrosis, AIDS, severe burns, organ transplants, or cancer. Liquid chromatography coupled online with tandem mass spectrometry was used for the large-scale proteomic analysis of the P. aeruginosa membrane subproteome. Concomitantly, an affinity labeling technique, using iodoacetyl-PEO biotin to tag cysteinyl-containing proteins, permitted the enrichment and detection of lower abundance membrane proteins. The application of these approaches resulted in the identification of 786 proteins. A total of 333 proteins (42%) had a minimum of one transmembrane domain (ranging from 1 to14) and 195 proteins were classified as hydrophobic based on their positive GRAVY values (ranging from 0.01 to 1.32). Key integral inner and outer membrane proteins involved in adaptation and antibiotic resistance were conclusively identified, including the detection of 53% of all predicted opr-type porins (outer integral membrane proteins) and all the components of the mexA-mexB-oprM transmembrane protein complex. This work represents one of the most comprehensive proteomic analyses of the membrane subproteome of P. aeruginosa and for prokaryotes in general.  相似文献   

7.
Schalk IJ  Abdallah MA  Pattus F 《Biochemistry》2002,41(5):1663-1671
Under iron-limiting conditions, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin (PaA), which, after complexing iron, is transported back into the cells via its outer membrane receptor FpvA. The recent finding that all FpvA receptors on the bacterial cell surface are loaded with iron-free PaA under iron limiting conditions has raised questions about the mechanism by which P. aeruginosa transports efficiently iron. We used [(3)H]PaA' [(55)Fe]PaA-Fe, and a kinetically stable chromium-PaA complex to show that iron loading of the receptor occurs through a siderophore displacement mechanism in vivo. Moreover, the fluorescence properties of iron-free PaA revealed that, after PaA-Fe uptake and dissociation, the PaA molecule is recycled into the extracellular medium. We used fluorescence resonance energy transfer (FRET) between the PaA chromophore and the FpvA tryptophans in vivo to monitor the kinetics of PaA displacement by PaA-Fe at the cell surface, the dissociation of iron from the siderophore, and the recycling of PaA back to the receptor on the outer membrane of the bacteria in real time. The loading status of FpvA (PaA versus PaA-Fe) was shown to depend on the relative concentration of the two forms of pyoverdin in the growth medium.  相似文献   

8.
Pyoverdine-mediated iron uptake by the FpvA receptor in the outer membrane of Pseudomonas aeruginosa is dependent on the inner membrane protein TonB1. This energy transducer couples the proton-electrochemical potential of the inner membrane to the transport event. To shed more light upon this process, a recombinant TonB1 protein lacking the N-terminal inner membrane anchor (TonB(pp)) was constructed. This protein was, after expression in Escherichia coli, purified from the soluble fraction of lysed cells by means of an N-terminal hexahistidine or glutathione S-transferase (GST) tag. Purified GST-TonB(pp) was able to capture detergent-solubilized FpvA, regardless of the presence of pyoverdine or pyoverdine-Fe. Targeting of the TonB1 fragment to the periplasm of P. aeruginosa inhibited the transport of ferric pyoverdine by FpvA in vivo, indicating an interference with endogenous TonB1, presumably caused by competition for binding sites at the transporter or by formation of nonfunctional TonB heterodimers. Surface plasmon resonance experiments demonstrated that the FpvA-TonB(pp) interactions have apparent affinities in the micromolar range. The binding of pyoverdine or ferric pyoverdine to FpvA did not modulate this affinity. Apparently, the presence of either iron or pyoverdine is not essential for the formation of the FpvA-TonB complex in vitro.  相似文献   

9.
Nader M  Journet L  Meksem A  Guillon L  Schalk IJ 《Biochemistry》2011,50(13):2530-2540
To get access to iron, Pseudomonas aeruginosa produces the siderophore pyoverdine (PVD), composed of a fluorescent chromophore linked to an octapeptide, and its corresponding outer membrane transporter FpvA. This transporter is composed of three domains: a β-barrel inserted into the membrane, a plug that closes the channel formed by the barrel, and a signaling domain in the periplasm. The plug and the signaling domain are separated by a sequence of five residues called the TonB box, which is necessary for the interaction of FpvA with the inner membrane TonB protein. Genetic deletion of the plug domain resulted in the presence of a β-barrel in the outer membrane unable to bind and transport PVD-Fe. Expression of the soluble plug domain with the TonB box inhibited PVD-(55)Fe uptake most likely through interaction with TonB in the periplasm. A reconstituted FpvA in the bacterial outer membrane was obtained by the coexpression of separately encoded plug and β-barrel domains, each endowed with a signal sequence and a signaling domain. This resulted in polypeptide complementation after secretion across the cytoplasmic membrane. The reconstituted FpvA bound PVD-Fe with the same affinity as wild-type FpvA, indicating that the resulting transporter is correctly folded and reconstituted in the outer membrane. PVD-Fe uptake was TonB-dependent but 75% less efficient compared to wild-type FpvA. These data are consistent with a gated mechanism in which no open channel with a complete removal of the plug domain for PVD-Fe diffusion is formed in FpvA at any point during the uptake cycle.  相似文献   

10.
Multi-wavelength anomalous diffraction phasing is especially useful for high-throughput structure determinations. Selenomethionine substituted proteins are commonly used for this purpose. However, the cytotoxicity of selenomethionine drastically reduces the efficiency of its incorporation in in vivo expression systems. In the present study, an improved E. coli cell-free protein synthesis system was used to incorporate selenomethionine into a protein, so that highly efficient incorporation could be achieved. A milligram quantity of selenomethionine-containing Ras was obtained using the cell-free system with dialysis. The mass spectrometry analysis showed that more than 95% of the methionine residues were substituted with selenomethionine. The crystal of this protein grew under the same conditions and had the same unit cell constants as those of the native Ras protein. The three-dimensional structure of this protein, determined by multi-wavelength anomalous diffraction phasing, was almost the same as that of the Ras protein prepared by in vivo expression. Therefore, the cell-free synthesis system could become a powerful protein expression method for high-throughput structure determinations by X-ray crystallography.  相似文献   

11.
The FpvA protein of Pseudomonas aeruginosa strain PAO1 mediates uptake of a siderophore, ferripyoverdine. It is also a component of a signal transduction pathway that controls production of an exotoxin, a protease, pyoverdine, and FpvA itself. The purpose of the research described here was to dissect these different functions of FpvA. Signaling involves an N-terminal domain of FpvA, and it was shown that this domain is probably located in the periplasm, as expected. Short peptides were inserted at 36 sites within FpvA by linker insertion mutagenesis. The effects of these mutations on the presence of FpvA in the outer membrane, on FpvA-mediated uptake of ferripyoverdine, and on pyoverdine synthesis and gene expression were determined. Five of the mutations resulted in the absence of FpvA from the outer membrane of the bacteria. All of the remaining mutations eliminated either the transport or signaling function of FpvA and most affected both functions. Three mutations prevented transport of ferripyoverdine but had no effect on the signal transduction pathway showing that transport of ferripyoverdine is not required for the trans-membrane signaling process. Conversely, eight mutations affected pyoverdine-mediated signaling but had no effect on transport of ferripyoverdine. These data show that insertions throughout FpvA resulted in loss of function and that signaling and transport are separate and discrete functions of FpvA.  相似文献   

12.
Under iron-limiting conditions, Pseudomonas aeruginosa PAO1 secretes a fluorescent siderophore called pyoverdine (Pvd). After chelating iron, this ferric siderophore is transported back into the cells via the outer membrane receptor FpvA. The Pvd-dependent iron uptake pathway requires several essential genes involved in both the synthesis of Pvd and the uptake of ferric Pvd inside the cell. A previous study describing the global phenotype of a tat-deficient P. aeruginosa strain showed that the defect in Pvd-mediated iron uptake was due to the Tat-dependent export of proteins involved in Pvd biogenesis and ferric Pvd uptake (U. Ochsner, A. Snyder, A. I. Vasil, and M. L. Vasil, Proc. Natl. Acad. Sci. USA 99:8312-8317, 2002). Using biochemical and biophysical tools, we showed that despite its predicted Tat signal sequence, FpvA is correctly located in the outer membrane of a tat mutant and is fully functional for all steps of the iron uptake process (ferric Pvd uptake and recycling of Pvd on FpvA after iron release). However, in the tat mutant, no Pvd was produced. This suggested that a key element in the Pvd biogenesis pathway must be exported to the periplasm by the Tat pathway. We located PvdN, a still unknown but essential component in Pvd biogenesis, at the periplasmic side of the cytoplasmic membrane and showed that its export is Tat dependent. Our results further support the idea that a critical step of the Pvd biogenesis pathway involving PvdN occurs at the periplasmic side of the cytoplasmic membrane.  相似文献   

13.
FpvA is an outer membrane transporter involved in iron uptake by the siderophore pyoverdine (Pvd) in Pseudomonas aeruginosa. This transporter, like all other proteins of the same family, consists of a transmembrane 22 beta-stranded barrel occluded by a plug domain. The beta-strands of the barrel are connected by large extracellular loops and short periplasmic turns. Site-directed mutagenesis was carried out on FpvA to identify the extracellular loops or parts of these loops involved in the various stages of Pvd-Fe uptake. The G286C, W362C, and W434C mutations in loops L1, L3, and L4, respectively, disturbed the binding of the apo siderophore, as shown by time-resolved fluorescence spectroscopy. Iron uptake experiments followed by fluorescence resonance energy transfer (FRET) or using 55Fe indicated that residues W434 and G701 and, therefore, loops L4 and L9 must be involved in Pvd-Fe uptake by FpvA. The two corresponding mutants incorporated smaller than normal amounts of 55Fe into cells, and no Pvd recycling on FpvA was observed after iron release. Surprisingly, the S603C mutation in loop L7 increased the amount of Pvd-Fe transported. Our results suggest that W434 (L4), S603 (L7), and G701 (L9) are involved in the mechanism of Pvd-Fe uptake.  相似文献   

14.
Various biochemical and biophysical studies have demonstrated the existence of a novel iron-uptake mechanism in Pseudomonas aeruginosa, different from that generally described for ferrichrome and ferric-enterobactin in Escherichia coli. This new iron-uptake mechanism involves all the proteins generally reported to be involved in the uptake of ferric-siderophore complexes in Gram-negative bacteria (i.e. the outer membrane receptor, periplasmic binding protein and ATP-binding-cassette transporter), but differs in the behaviour of the siderophore. One of the key features of this process is the binding of iron-free pyoverdin to the outer membrane receptor FpvA in conditions of iron deficiency.  相似文献   

15.
Pseudomonas aeruginosa K437 lacks the ferripyoverdine receptor and, as a result, grows poorly on an iron-deficient minimal medium supplemented with ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA) and pyroverdine. By using a phagemid-based in vivo cloning system, attempts were made to clone the receptor gene by complementing this growth defect. Several recombinant phagemids carrying P. aeruginosa chromosomal DNA which provided for good growth on EDDHA-pyoverdine-containing medium and which concomitantly restored production of the ferripyroverdine receptor in strain K437 were isolated. These phagemids contained a common 4.6-kb SphI fragment which similarly restored production of the receptor in K437. Nucleotide sequencing of the SphI fragment revealed a single large open reading frame, designated fpvA (ferripyoverdine uptake), of 2439 bp. The predicted translation product of fpvA has a molecular mass of 89,395 Da. N-terminal amino acid sequence analysis of the purified ferripyoverdine receptor confirmed fpvA as the receptor gene. Moreover, it indicated that the receptor is initially synthesized as a precursor with a signal sequence of 27 amino acids which is cleaved to yield the mature protein. The deduced FpvA polypeptide exhibited homology to regions shown to be conserved in TonB-dependent receptor proteins. FpvA also shared strong homology (41.3% identity) with the PupA protein of Pseudomonas putida WCS358. This protein is the receptor for the iron-bound form of pseudobactin, a compound structurally very similar to pyoverdine.  相似文献   

16.
Lactococcus lactis is a promising host for (membrane) protein overproduction. Here, we describe a protocol for incorporation of selenomethionine (SeMet) into proteins expressed in L. lactis. Incorporation efficiencies of SeMet in the membrane protein complex OpuA (an ABC transporter) and the soluble protein OppA, both from L. lactis, were monitored by mass spectrometry. Both proteins incorporated SeMet with high efficiencies (>90%), which greatly extends the usefulness of the expression host L. lactis for X‐ray crystallography purposes. The crystal structure of ligand‐free OppA was determined at 2.4 Å resolution by a semiautomatic approach using selenium single‐wavelength anomalous diffraction phasing.  相似文献   

17.
Clément E  Mesini PJ  Pattus F  Schalk IJ 《Biochemistry》2004,43(24):7954-7965
In iron-deficient conditions, Pseudomonas aeruginosa secretes a major fluorescent siderophore named pyoverdin (Pvd), which after chelating iron(III) is transported back into the cell via its outer membrane receptor FpvA. FpvA is a TonB-dependent transport protein and has the ability to bind Pvd in its apo- or iron-loaded form. The fluorescence properties of Pvd were used to determine the binding kinetics of metal-free and metal-loaded Pvd to FpvA and showed two major features. First, the kinetics of formation of the FpvA-Pvd complex, in vivo and in vitro, are markedly slower compared to those observed for FpvA-Pvd-metal. Second, apo-Pvd and Pvd-metal absorbed with biphasic kinetics to FpvA: the bimolecular step (association of the ligand with the receptor) is followed by a slower step (t(1/2) values of 5 and 34 min for Pvd-metal and Pvd, respectively) that presumably leads to a more stable complex. The most likely explanation for this second step is that the binding of the ligand to the receptor induces a conformational change on FpvA, which may be different, depending on the loading status of Pvd. Analysis of the dissociation of metal-free Pvd from FpvA revealed an energy and a TonB dependency. The dissociation of iron-free Pvd from FpvA in the absence of the TonB protein occurs with slow kinetics in the range of hours, but it can be highly activated by the protonmotive force and TonB to reach a kinetic with a t(1/2) of 1 min. Apparently, under iron-limited conditions, TonB activates the FpvA receptor, resulting in a fast release of iron-free Pvd and generating an unloaded FpvA receptor, competent for binding extracellular Pvd-Fe.  相似文献   

18.
Efficient multiple- or single-wavelength anomalous dispersion (MAD/SAD) techniques that use tunable X-ray sources at third-generation synchrotrons exploit the anomalous scattering of certain heavy atoms for determination of experimental phases. Development of methods for the in vivo substitution of methionine by selenomethionine (SeMet) has revolutionized the process for determination of structures of soluble proteins in recent years. Herein, we report methods for biosynthetic incorporation of SeMet into induced intracytoplasmic membrane proteins of two species of the Rhodobacter genus of purple non-sulfur photosynthetic bacteria. Amino acid analysis of a membrane protein complex that was purified to homogeneity determined that the extent of SeMet incorporation was extensive and approached quantitative replacement. Diffraction-quality crystals were obtained from SeMet-labeled membrane proteins purified from 2 l of culture. These methods augment the potential utility of photosynthetic bacteria and their inducible membrane systems for the production of foreign membrane proteins for structure determination.  相似文献   

19.
In iron limitation conditions, Pseudomonas aeruginosa secretes a major fluorescent siderophore named pyoverdin (PaA). PaA has an extremely high affinity for Fe(3+) but also chelates other ions such as Al(3+) and Ga(3+) with a lower affinity. The transfer of PaA-Fe(3+) across the outer membrane of the bacteria is mediated by the receptor FpvA, a TonB-dependent outer membrane transport protein. FpvA binds the iron-free and iron-loaded forms of pyoverdin with similar affinities, but only PaA-Fe(3+) is taken up by the cell, suggesting that FpvA adopts different conformations depending on its loading status. We used time-resolved fluorescence spectroscopy to characterize the different forms of FpvA-PaA in vitro. We showed that the FpvA-PaA complex adopts two different conformations depending on how it was prepared (formed in vitro or in vivo prior to purification). The dihydroquinoline moiety of both conformers is fully protonated, or coordinated by protein charged groups, but the polarity of its environment, its solvent accessibility, and its rotational dynamics are much slower when the FpvA-PaA complex is formed in vivo than in vitro. In the presence of Ga(3+) or Al(3+) ions, the solvent accessibility and mobility of the dihydroquinoline moiety in the two FpvA-PaA complexes are intermediate between those observed for the metal-free ones. In addition, the F?rster resonance energy transfer kinetics from FpvA tryptophan residues to the PaA chromophore differs from one complex to the other, revealing differences in one or more of the donor-acceptor topologies.  相似文献   

20.
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium, which is also able to cause severe opportunistic infections in humans. The colonization of the host is importantly affected by the production of the high-affinity iron (III) scavenging peptidic siderophore pyoverdine. The species P. aeruginosa can be divided into three subgroups ('siderovars'), each characterized by the production of a specific pyoverdine and receptor (FpvA). We used a multiplex PCR to determine the FpvA siderovar on 345 P. aeruginosa strains from environmental or clinical origin. We found about the same proportion of each type in clinical strains, while FpvA type I was slightly over-represented (49%) in environmental strains. Our multiplex PCR also detected the presence or absence of an additional receptor for type I pyoverdine (FpvB). The fpvB gene was in fact present in the vast majority of P. aeruginosa strains (93%), regardless of their siderovar or their origin. Finally, molecular analyses of fpvA and fpvB genes highlighted a complex evolutionary history, probably linked to the central role of iron acquisition in the ecology and virulence of P. aeruginosa .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号