首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
Effect of two calcium channel blockers (CCBs) nifedipine and amlodipine, was studied on normal and steroid depressed wound healing in albino rats, using the dead space wound model. The drugs enhanced normal healing as evidenced by increase in tensile strength of 10 days old granulation tissue. There was neither a significant change in the hydroxyproline level (or collagen) nor a change in the glycosaminoglycan content in granulation tissue. However, lysyloxidase level was increased significantly. The increase in tensile strength could thus be attributed to better cross-linking and maturation of collagen rather than collagen synthesis per se. The drugs were also able to overcome steroid depressed wound healing. It is likely that the prohealing effects may be related to the improved antioxidant status too, since superoxide dismutase levels were observed to be higher in the CCB- treated animals.  相似文献   

2.
Daily therapeutic injections of cortisone to rats will cause weight loss and impaired wound healing. Weight loss is attributed to the catabolic effect of steroid, whereas impaired healing is associated with reductions in fibroplasia and connective tissue deposition. As the major structural protein component of connective tissue is collagen, its absence is responsible for the retarded gain in wound breaking strength. Cortisone also blocks wound closure by inhibiting wound contraction. An anabolic agent such as growth hormone may antagonize the effect of cortisone on the wound healing process. Endogenous GH can be released from the pituitary by exogenous injections of growth hormone-releasing factor (GRF). Two synthetic GRF peptides, a natural 44-amino acid peptide of the human GRF sequence, GRF-44, and an N-terminally substituted analog 29 residues, GRF-29A, were studied. Each was given twice daily with a single daily injection of cortisone for a 7-day period. Concurrent administration of GRF-44 or GRF-29A and cortisone to rats had no effect on restored body weight loss or inhibited wound contraction. While GRF-44 restored collagen deposition and caused restored wound breaking strength, GRF-29A was ineffective in restoring either. GRF-44, a synthetic peptide that stimulates pituitary release of growth hormone, antagonized some of the inhibiting effect of steroid on wound repair by promoting fibroplasia and collagen deposition.  相似文献   

3.
Wound healing consists of an orderly progression of events that re-establish the integrity of the damaged tissue. Several natural products have been shown to accelerate the healing process. The present investigation was undertaken to determine the role of curcumin on changes in collagen characteristics and antioxidant property during cutaneous wound healing in rats. Full-thickness excision wounds were made on the back of rat and curcumin was administered topically. The wound tissues removed on 4th, 8th and 12th day (post-wound) were used to analyse biochemical and pathological changes. Curcumin increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and type III collagen content of wound tissues. Curcumin treated wounds were found to heal much faster as indicated by improved rates of epithelialisation, wound contraction and increased tensile strength which were also confirmed by histopathological examinations. Curcumin treatment was shown to decrease the levels of lipid peroxides (LPs), while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), activities were significantly increased exhibiting the antioxidant properties of curcumin in accelerating wound healing. Better maturation and cross linking of collagen were observed in the curcumin treated rats, by increased stability of acid-soluble collagen, aldehyde content, shrinkage temperature and tensile strength. The results clearly substantiate the beneficial effects of the topical application of curcumin in the acceleration of wound healing and its antioxidant effect. Both the authors have contributed equally towards this paper.  相似文献   

4.
Efficacy of Butea monosperma on dermal wound healing in rats   总被引:2,自引:0,他引:2  
Wound healing occurs as a fundamental response to tissue injury. Several natural products have been shown to accelerate the healing process. The present investigation was undertaken to determine the efficacy of topical administration of an alcoholic bark extract of Butea monosperma (B. monosperma) on cutaneous wound healing in rats. Full-thickness excision wounds were made on the back of rat and B. monosperma extract was administered topically. The granulation tissue formed on days 4, 8, 12 and 16 (post-wound) was used to estimate total collagen, hexosamine, protein, DNA and uronic acid. The extract increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and total collagen content of granulation tissues. The extract treated wounds were found to heal much faster as indicated by improved rates of epithelialization and wound contraction, also confirmed by histopathological examinations. Also, the tensile strength of drug-treated wounds was increased significantly. In addition, we show that B. monosperma possesses antioxidant properties, by its ability to reduce lipid peroxidation. The results clearly substantiate the beneficial effects of the topical application of B. monosperma in the acceleration of wound healing.  相似文献   

5.
Cutaneous wound healing consists of three main phases: inflammation, re-epithelialization, and tissue remodeling. During normal wound healing, these processes are tightly regulated to allow restoration of skin function and biomechanics. In many instances, healing leads to an excess accumulation of fibrillar collagen (the principal protein found in the extracellular matrix - ECM), and the formation of scar tissue, which has compromised biomechanics, tested using ramp to failure tests, compared to normal skin (Corr and Hart, 2013 [1]). Alterations in collagen accumulation and architecture have been attributed to the reduced tensile strength found in scar tissue (Brenda et al., 1999; Eleswarapu et al., 2011). Defining mechanisms that govern cellular functionality and ECM remodeling are vital to understanding normal versus pathological healing and developing approaches to prevent scarring. CD44 is a cell surface adhesion receptor expressed on nearly all cell types present in dermis. Although CD44 has been implicated in an array of inflammatory and fibrotic processes such as leukocyte recruitment, T-cell extravasation, and hyaluronic acid (the principal glycosaminoglycan found in the ECM) metabolism, the role of CD44 in cutaneous wound healing and scarring remains unknown. We demonstrate that in an excisional biopsy punch wound healing model, CD44-null mice have increased inflammatory and reduced fibrogenic responses during early phases of wound healing. At wound closure, CD44-null mice exhibit reduced collagen degradation leading to increased accumulation of fibrillar collagen, which persists after wound closure leading to reduced tensile strength resulting in a more severe scarring phenotype compared to WT mice. These data indicate that CD44 plays a previously unknown role in fibrillar collagen accumulation and wound healing during the injury response.  相似文献   

6.
Alteration of the radiation-induced changes in wound contraction, collagen synthesis and wound histology by ascorbic acid was studied in mice exposed to 10, 16 and 20 Gy of fractionated (2 Gy/fraction) gamma radiation. The animals were given double-distilled water or ascorbic acid daily before exposure to 2 Gy/day of fractionated irradiation. A full-thickness skin wound was created on the dorsum of the irradiated mice, and the progression of wound contraction and collagen synthesis were examined and histological evaluations were carried out at various times after wounding. Irradiation caused a dose-dependent delay in wound contraction, and pretreatment with ascorbic acid resulted in a significant increase in wound contraction. The greatest increase in wound contraction was observed 6 and 9 days after wounding in both groups. Pretreatment with ascorbic acid augmented the synthesis of collagen significantly as revealed by an increase in hydroxyproline content. The collagen deposition and fibroblast and vasculature densities declined in a dose-dependent manner in groups receiving radiation alone as indicated by histological evaluation. Pretreatment with ascorbic acid ameliorated the observed effect significantly. These studies demonstrate that pretreatment with ascorbic acid resulted in a significant reduction of radiation-induced delay in wound healing as shown by earlier wound closure and increased collagen content and fibroblast and vascular densities.  相似文献   

7.
Summary. The factors participating to the wound healing are complex and still obscure. Among these factors, epidermal growth factor (EGF) and histamine by increasing reepithelization and reparation tissue strength via enhancing collagen deposition to the wound site have a beneficial effect. This study was performed to investigate the effect of EGF dosage forms on the histamine content of the experimentally induced wound and some wound healing criters in the mice.Histological investigation of reepithelization, wound tensile strength for healing and collagen maturation, and histamine levels were assessed in the present study. Thirty two mice were divided into control, and EGF treated groups. Controls included three subgroups; untreated (n=5), 0.9% NaCl applied (n=5), and gel applied (n=5). Experimental groups were treated with two forms of EGF; EGF, solution form in 0.9% NaCl (n=5) and the gel form in 0.2% w/w in carbopol 940 (n=7). The discrepancy between these forms were evaluated. This evaluation was done by the application of two forms of EGF for 15 days on experimentally induced wound healing.Gel form of EGF by sustained release from bioadhesive polymer is found to be more effective than the soluble form, on the healing of the wound, by acceleration of reepithelization and increment of wound tensile strength. The tensile strength of the wound indicates the rate of repair and collagen maturation. It has been observed that when physiological saline and carbopol 940 exposed to incision without EGF causes a significant increase in tissue histamine content.According to the results of the present investigation; the histamine content is found to be decreased by EGF gel dosage form treatment, therefore preventing abnormal collagen formation has a beneficial effect on wound healing.  相似文献   

8.
Ethanolic extract of leaves of O. sanctum was investigated for normal wound healing and dexamethasone depressed healing using incision, excision and dead space wound models in albino rats. The extract of O. sanctum significantly increased the wound breaking strength in incision wound model. The extract treated wounds were found to epithelialize faster and the rate of wound contraction was significantly increased as compared to control wounds. Significant increase in wet and dry granulation tissue weight, granulation tissue breaking strength and hydroxyproline content in dead space wound model was observed. The extract significantly decreased the antihealing activities of dexamethasone in all the wound models. The results indicated that the leaf extract promotes wound healing significantly and able to overcome the wound healing suppressing action of dexamethasone. Histological examination of granulation tissue to determine the pattern of lay-down for collagen confirmed the results.  相似文献   

9.
The ability of single growth factors to promote healing of normal and compromised wounds has been well described, but wound healing is a process requiring the coordinated action of multiple growth factors. Only the synergistic effect on wound healing of combinations containing at most two individual growth factors has been reported. We sought to assess the ability of a novel milk-derived growth factor-enriched preparation ?mitogenic bovine whey extract (MBWE), which contains six known growth factors, to promote repair processes in organotypic in vitro models and incisional wounds in vivo. MBWE stimulated the contraction of fibroblast-populated collagen lattices in a dose-dependent fashion and promoted the closure of excisional wounds in embryonic day 17 fetal rat skin. Application of MBWE increased incisional wound strength in normal animals on days 3, 5, 7, and 10 and reversed the decrease in wound strength observed following steroid treatment. Wound histology showed increased fibroblast numbers in wounds from normal and steroid-compromised animals. These data suggest the mixture of factors present in bovine milk exerts a direct action on the cells of cutaneous wound repair to enhance both normal and compromised healing.  相似文献   

10.
Two models of wound repair compared the effect of defined, recombinant growth factors on the rate of wound repair in both normal and streptozotocin-induced diabetic rats: subcutaneous implantation of polyvinyl alcohol sponges and incisional wounding. Transverse incisional wounds were made on the dorsal surface of rats and closed with steel sutures. Three days postwounding the rats received a single injection of either transforming growth factor-beta or vehicle alone directly into the wound site. Animals were sacrificed 7, 14, and 21 days postwounding, and fresh and formalin-fixed wound tensile strength were measured. Diabetic rats had expected defects in wound repair, including decreased granulation tissue and reduced amounts of collagen, protein, and DNA. Fresh tensile strength of the diabetic incisions was 53% of normal on Day 7 (p < or = .01) and 29% of normal on Day 21. Fixed tensile strength was 41% of normal on Day 7 (p < or = .01) and fell to 78% of normal by Day 21 (p < or = .01), suggesting that collagen concentrations of diabetic wounds increased towards normal but did not undergo maturation. TGF beta produced a moderate increase in tensile strength of fresh and fixed wounds of diabetic rats, but not to the levels of wounds in untreated normal rats. Sponges fill with granulation tissue, their reproducible rate of organization being measured by histological and biochemical methods. A single injection into sponges 3 days postimplantation of basic fibroblast growth factor, transforming growth factor-beta, or vehicle only, was evaluated at 7 and 9 days postimplantation. In the sponge model, bFGF and TGF beta were each able to induce significant increases in the accumulation of granulation tissue in both diabetic and normal rats. TGF beta increased the collagen content of sponges by 136% in sponges from diabetic animals (p < or = .001), thereby raising the collagen content to that of normal control wounds, while stimulating a 49% (p < or = .02) increase in sponges from normal animals on Day 9. By contrast, the response to bFGF was predominantly an increase in the protein and DNA content of the sponges. These results emphasize the differential effects of the two cytokines in accelerating healing under conditions of defective wound repair.  相似文献   

11.
12.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

13.
Chronically elevated blood glucose levels result in reduced leukocyte function and cell malnutrition, which contribute to a high rate of wound infection and associated healing problems in diabetic patients. In the present study, the role of biotinylated GHK peptide (BioGHK) incorporated collagen biomaterial was tested for wound healing in diabetic rats. The rate of wound contraction and the levels of collagen, uronic acid, protein and DNA in the granulation tissue were determined. Further, the concentration of nitric oxide and other skin antioxidants was also monitored during the study. In diabetic rats treated with BioGHK incorporated collagen (Peptide Incorporated Collagen--PIC), the healing process was hastened with an increased rate of wound contraction. Glutathione (GSH) and ascorbic acid levels in the skin of streptozotocin-induced diabetic rats were higher in the PIC group as compared to control (Untreated) and collagen (Collagen Film--CF) treated groups. Superoxide dismutase (SOD) and catalase (CAT) activity was altered in all the groups. In vitro fibroblast cell culture studies suggest that PIC promotes fibroblast growth. Histological evaluation by haematoxylin-eosin and Masson's trichrome method revealed epithelialization, increased synthesis of collagen and activation of fibroblasts and mast cells in the PIC group. This study provides a rationale for the topical application of BioGHK incorporated collagen as a feasible and productive approach to support diabetic wound healing.  相似文献   

14.
Wound healing is a finely controlled biological process involving a series of complex cellular interactions. Following inflammation, the wound bed matrix is gradually replaced by granulation tissue followed by the long slow process where collagen accumulates and restores tensile strength. The studies revealed that human granulation tissue varied in many aspects in comparison with normal skin. In granulation tissue the molecular organization of collagen showed an increased amount of type III collagen resembling embryonic tissue. The presence of type V collagen with three distinct chains was the characteristic feature of granulation tissue. The physicochemical properties of collagen extracted from granulation tissue showed the influence of proteoglycans during collagen aggregation and these proteoglycans from the major non-collagenous proteins during the proliferative phase of healing.  相似文献   

15.
Effect of sodium diphenylhydantoin on skin wound healing in rats   总被引:2,自引:0,他引:2  
This study evaluated the effect of phenytoin (sodium diphenylhydantoin) on skin wound healing in a rat model. The study was divided into two parts. In part I, 20 mul of phenytoin (10 mg/ml) was subcutaneously injected into the 3-cm dorsal full-thickness incisional wounds of 14 rats on postoperative days 0, 3, and 6. Twelve rats that received saline injections were used as the controls. The skin samples were harvested and tested for tensile strength and histology. An additional 12 rats with the same incisional wounds were tested for chemokine gene expressions. In part II, 20 mul of phenytoin (10 mg/ml) was applied topically once a day on a 4 x 4 cm area of the open dorsal wounds of 10 rats. Saline was applied to the wounds of the 10 control group rats. The wounds were measured weekly. The results showed that the average tensile strength of the phenytoin-treated wound was 0.49 +/- 0.08 MPa compared with the control group at 0.02 +/- 0.01 MPa (p < 0.05). The density ratio of chemokine monocyte chemotactic protein (MCP-1) to beta-actin in the phenytoin-treated group was also significantly higher than in the control group (p < 0.05). Histologic analysis of the phenytoin group showed a large amount of fibroblast proliferation, collagen synthesis, and neovascularization. Phenytoin-treated wounds were also smaller at 1 to 6 weeks postoperatively than the control group wounds. The authors conclude that the administration of phenytoin can promote wound healing and significantly increase MCP-1 expression. Phenytoin-treated wounds showed significant increase in collagen deposition and neovascularization, which resulted in an increased wound tensile strength and accelerated healing of both open and closed wounds.  相似文献   

16.
To assess the recovery effect of water-soluble components of nacre on wound healing of burns, water-soluble nacre (WSN) was obtained from powdered nacre. Alterations to WSN-mediated wound healing characteristics were examined in porcine skin with deep second-degree burns; porcine skin was used as a proxy for human. When WSN was applied to a burned area, the burn-induced granulation sites were rapidly filled with collagen, and the damaged dermis and epidermis were restored to the appearance of normal skin. WSN enhanced wound healing recovery properties for burn-induced apoptotic and necrotic cellular damage and spurred angiogenesis. Additionally, WSN-treated murine fibroblast NIH3T3 cells showed increased proliferation and collagen synthesis. Collectively, the findings indicate that WSN improves the process of wound healing in burns by expeditiously restoring angiogenesis and fibroblast activity. WSN may be useful as a therapeutic agent, with superior biocompatibility to powdered nacre, and evoking less discomfort when applied to a wounded area.  相似文献   

17.
The present study reports for the first time, the in vivo wound healing potential of Punica granatum L. peels. A 5% (w/w) methanolic extract based-ointment was formulated and evaluated for its wound healing in guinea pigs. The ointment was applied in vivo on the paravertebral area of twelve excised wounded models once a day for 10 consecutive days. The ointment significantly enhanced the wound contraction and the period of epithelialization as assessed by the mechanical (contraction rate, tensile strength), the biochemical (increasing of collagen, DNA and proteins synthesis) and the histopathological characteristics. Such investigation was encouraged by the efficiency of the methanolic extract as antimicrobial and antioxidant. Indeed, the extract showed antioxidant activity as strong as natural and synthetic compounds (Trolox, BHA, Quercetin). Furthermore, the extract exhibited significant antibacterial and antifungal activity against almost all tested bacteria: Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Klebsiella pneumoniae, Salmonella anatum, Salmonella typhimurium, Streptococcus pneumoniae, and fungi Candida albicans, Candida glabrata, Trichopyton rubrum and Aspergillus niger. The formulated ointment might well find use as skin repair agent without hazard to human health based on these results and on the fact that it has been well established that the extracts of pomegranate used in conditions similar to those applied by traditional medicine, showed no toxic effects.  相似文献   

18.
Matrix metalloproteinase- (MMP-9) is involved in processes that occur during cutaneous wound healing such as inflammation, matrix remodeling, and epithelialization, To investigate its role in healing, full thickness skin wounds were made in the dorsal region of MMP-9-null and control mice and harvested up to 14 days post wounding. Gross examination and histological and immunohistochemical analysis indicated delayed healing in MMP-9-null mice. Specifically, MMP-9-null wounds displayed compromised reepithelialization and reduced clearance of fibrin clots. In addition, they exhibited abnormal matrix deposition, as evidenced by the irregular alignment of immature collagen fibers. Despite the presence of matrix abnormalities, MMP-9-null wounds displayed normal tensile strength. Ultrastructural analysis of wounds revealed the presence of large collagen fibrils, some with irregular shape. Keratinocyte proliferation, inflammation, and angiogenesis were found to be normal in MMP-9-null wounds. In addition, VEGF levels were similar in control and MMP-9-null wound extracts. To investigate the importance of MMP-9 in wound reepithelialization we tested human and murine keratinocytes in a wound migration assay and found that antibody-based blockade of MMP-9 function or MMP-9 deficiency retarded migration. Collectively, our observations reveal defective healing in MMP-9-null mice and suggest that MMP-9 is required for normal progression of wound closure.  相似文献   

19.
In this study, we investigated the role of nerve growth factor (NGF)-incorporated collagen on wound healing in rats. Full-thickness excision wounds were made on the back of female rats weighing about 150-160 g. Topical application of NGF-incorporated collagen, at a concentration of 1 microg/1.2 mg collagen/cm(2), once a day, for 10 days resulted in complete healing of wounds on the 15th day. The concentrations of collagen, hexosamine and uronic acid in the granulation tissue were determined. The NGF-incorporated collagen-treated rats required shorter duration for the healing with an increased rate of wound contraction. Histological and electron microscopical evaluations were also performed, which reveal the activation of fibroblasts and endoplasmic reticulum and therefore increased level of collagen synthesis due to NGF application. These results clearly indicate that the topical application of NGF-incorporated collagen enhanced the rate of healing of excision wounds.  相似文献   

20.
The ethanolic extract of S. robusta resin (10 and 30 % w/w applied locally in excised and incised wounds) produced a dose-dependent acceleration in wound contraction and increased hydroxyproline content and tensile strength of wounds in rats. The results demonstrate wound healing activity of ethanolic extract of S. robusta resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号