首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

2.
The aqueous lining of the lung surface exposed to the air is covered by lung surfactant, a film consisting of lipid and protein components. The main function of lung surfactant is to reduce the surface tension of the air-water interface to the low values necessary for breathing. This function requires the exchange of material between the lipid monolayer at the interface and lipid reservoirs under dynamic compression and expansion of the interface during the breathing cycle. We simulated the reversible exchange of material between the monolayer and lipid reservoirs under compression and expansion of the interface. We used a mixture of dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol, cholesterol, and surfactant-associated protein C as a functional analog of mammalian lung surfactant. In our simulations, the monolayer collapses into the water subphase on compression and forms bilayer folds. On monolayer reexpansion, the material is transferred from the folds back to the interface. The simulations indicate that the connectivity of the bilayer aggregates to the monolayer is necessary for the reversibility of the monolayer-bilayer transformation. The simulations also show that bilayer aggregates are unstable in the air subphase and stable in the water subphase.  相似文献   

3.
We have used an in vitro model system to analyze cytomechanical aspects of tissue infiltration by T-lymphocytes. The interaction of metastatic T-lymphoma cells with a precultured monolayer of 10T1/2 fibroblast-like cells was recorded in time-lapse video with alternating phase contrast and reflection interference contrast microscopy. Sectioning of embedded specimens as well as cytoskeletal stainings have been performed on matching cocultures. The lymphoma cells did not strongly attach or spread on the dorsal surface of the monolayer cells. Invasion started with the protrusion of a pseudopodium through a narrow gap, and conspicuous constriction of the invading cell's body and nucleus was a consistent feature during the later steps. Overt retraction of the target cells was not seen, but the invading lymphoma cells elevated the fibroblasts over relatively large areas, thereby creating dome-shaped open spaces, allowing for further migration under the monolayer with minimal resistance. Invasion was not unidirectional but was readily reversible at any stage. Due to this wavering character, an invasion event could take more than 1 hour, although the shape alterations involved were fast. Even after the invasion process had been completed, the lymphoma cells could come out from below the monolayer again. Therefore we propose that invasion in this model should be considered as a dynamic equilibrium. Invading T-lymphoma cells displayed diffuse F-actin staining and a well-organized microtubular complex with the centrosomes behind the nucleus in the uropod, which also contained most vesicular organelles.  相似文献   

4.
The amyloid beta (1-40) peptide (A beta) is the main component of amyloid deposits found in the brain of patients afflicted with Alzheimer's disease. After treatment with hexafluoroisopropanol, commercial A beta is readily soluble in water and buffers at pH 7.4 and has an irregular secondary structure. The adsorption of A beta to the water-air interface and to the surface of the dipalmitoylphosphatidylethanolamine monolayer at a surface pressure pi close to zero leads to an increase in pressure up to 17 mN/m. When being adsorbed, the molecules of the peptide occupy a part of the monolayer surface, which leads to the compression of lipid molecules forming the monolayer. Further compression of the monolayer composed of the molecules of the lipid and peptide leads to the extrusion of the peptide from the monolayer. If the lipid monolayer is preliminarily (prior to the addition of the peptide to the liquid phase) compressed to pi = 30 mN/m, no adsorption of the peptide to the monolayer occurs. No changes in the structure of the dipalmitoylphosphatidylethanolamine monolayer were detected by the sliding X-ray diffraction method, indicating the absence of specific interactions. The method of reflection and absorption infrared spectroscopy makes it possible to determine the conformation of the adsorbed peptide and its orientation in the lipid monolayer. It was found that A beta has the conformation of a beta-fold oriented parallel to the interface, as it is the case with the adsorption of peptide molecules to the lipid monolayer at pi < 30 mN/m and upon adsorption to the interface that is not occupied by the lipid.  相似文献   

5.
Polarized visible reflection spectra of a chlorophyll a (Chl.a) Langmuir monolayer have been measured in situ at various surface pressures. By applying Hansen's optics to the three-phase plane-bounded system (air/Chl.a monolayer/water), the negative reflection absorbances observed were reproduced satisfactorily by the theoretical calculation. Molecular orientation of Chl.a in the monolayer was evaluated quantitatively as a function of surface pressure, from the reflection absorbance of p- and s-polarized spectra of the red (Qy) band. It has been proven that Chl.a molecules in the monolayer form aggregates (islands) even in the low surface pressure region and that during the monolayer compression the molecules are gradually reorganized from inhomogeneous islands to ordered structures, with the chromophores oriented on the average vertically to the water surface.  相似文献   

6.
The insertion of immunoglobulin (IgG) in a glycolipid monolayer was achieved by using the ability of new proteo-glycolipid vesicles to disintegrate into a mixed IgG-glycolipid interfacial film after spreading at an air-buffer interface. The interfacial disintegration kinetics was shown to be directly dependent on the initial vesicle surface density and on the buffer ionic strength. The presence of the immunoglobulin in the glycolipid film was displayed by an increase of the lateral compressibility (Cs) during monolayer compression. Cs magnitude modifications, due to the antibody effect on the monolayer packing, decreases as the spread vesicle density increases. At interfacial saturation, the lateral compressibility profile becomes similar to that of a control monolayer without antibody. However, the careful analysis of the mixed monolayer after transfer by Langmuir-Blodgett technique (ATR-FTIR characterisation, enzyme immunoassociation) clearly demonstrated that the antibody was still present in such conditions and was not completely squeezed out from the interface as compressibility changes could have meant. At nonsaturating vesicle surface density, IgG molecules initially lying in the lipid matrix with the Y-shape plane parallel to the interface move to a standing-up position during the compression, leading to lateral compressibility modifications. For a saturating vesicle surface density, the glycolipid molecules force the IgG molecules to directly adopt a more vertical position in the interfacial film and, consequently, no lateral compressibility modification was recorded during the compression.  相似文献   

7.
Isotherms have been obtained near 37 degrees C for a series of repetitive compressions and expansions of monolayers that contain major components of lung surfactant. The minimum surface tension or maximum surface pressure which could be achieved under conditions of dynamic compression, and the rate of return of lipid from excluded phase to the monolayers were measured. Monolayers of pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or of DPPC plus 10 or 30 mol% of the calcium salt of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG) (POPG-Ca) achieved very high surface pressures or low surface tensions (near 0 mN m-1), but they showed no return of material from the collapse phases under the test conditions. Monolayers of POPG-Ca alone collapsed at relatively low surface pressures (high surface tensions), but showed good return of material from the collapse phase into the monolayer. Monolayers containing more complex mixtures of lipids (DPPC, phosphatidylglycerol (PG), unsaturated phosphatidylcholine (PC), cholesterol (chol] in ratios similar to those found in surfactant achieved minimum surface tensions intermediate between those of monolayers with less complex compositions. These more complex mixtures showed a better rate of return of lipids from the collapse phases to the monolayer than did simple DPPC-POPG mixtures. 31P-NMR and differential scanning calorimetric investigations of the mixture DPPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/POP G/DPPG/chol (10:4:2:1:3) showed that in the bulk phase at 37 degrees C, it was in bilayers in the liquid-crystalline state.  相似文献   

8.
The secondary structure of organophosphorus hydrolase (OPH) at the air-water interface was studied using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). The shape and position of the amide I and amide II bands were used to estimate the surface conformation and orientation of OPH. The PM-IRRAS results indicated that the enzyme did not unfold for the range of surface pressure used (0-30 mN/m). At low surface pressures, the signal of amide I was very weak and the intensity was almost the same as amide II. Upon further compression, the PM-IRRAS signal and the ratio of the intensity of amide I and amide II both increase, implying an increased interfacial concentration of the enzyme. From the amide I/amide II ratio and the band position, it was deduced that the enzyme adopts a conformation which gives a higher occupied surface at low surface pressure and rotates to a more vertical orientation at high surface pressures. The compression and decompression of the OPH monolayer indicated that the fingerprint of the secondary structure at the air-water interface was reversible. PM-IRRAS was also used to investigate the pH effect of the subphase on the secondary structure of OPH. The secondary structure of OPH at the air-water interface was well defined when the pH of the subphase was near its isoelectric point (IP, pH 7.6). However, it adopted a different orientation when the subphase pH values were higher or lower than the IP with formation of random coil structure. The hydrolysis of organophosphorus compound paraoxon by OPH was also studied at the air-water interface by PM-IRRAS. The pH effect and the interaction with paraoxon both seem to orientate the enzyme more in the plane of the interface and to produce random coil structure.  相似文献   

9.
Pulmonary surfactant forms a surface film that consists of a monolayer and a monolayer-associated reservoir. The extent to which surfactant components including the main component, dipalmitoylphosphatidylcholine (DPPC), are adsorbed into the monolayer, and how surfactant protein SP-A affects their adsorptions, is not clear. Transport of cholesterol to the surface region from dispersions of bovine lipid extract surfactant [BLES(chol)] with or without SP-A at 37 degrees C was studied by measuring surface radioactivities of [4-(14)C]cholesterol-labeled BLES(chol), and the Wilhelmy plate technique was used to monitor adsorption of monolayers. Results showed that transport of cholesterol was lipid concentration dependent. SP-A accelerated lipid adsorption but suppressed the final level of cholesterol in the surface. Surfactant adsorbed from a dispersion with or without SP-A was transferred via a wet filter paper to a clean surface, where the surface radioactivity and surface tension were recorded simultaneously. It was observed that 1) surface radioactivity was constant over a range of dispersion concentrations; 2) cholesterol and DPPC were transferred simultaneously; and 3) SP-A limited transfer of cholesterol.These results indicate that non-DPPC components of pulmonary surfactant can be adsorbed into the monolayer. Studies in the transfer of [1-(14)C]DPPC-labeled BLES(chol) to an equal or larger clean surface area revealed that SP-A did not increase selective adsorption of DPPC into the monolayer. Evaluation of transferred surfactant with a surface balance indicated that it equilibrated as a monolayer. Furthermore, examination of transferred surfactants from dispersions with and without prespread BLES(chol) monolayers revealed a functional contiguous association between adsorbed monolayers and reservoirs.  相似文献   

10.
The state of photosystem II core complex (PS II CC) in monolayer at the gas-water interface was investigated using in situ polarization-modulated infrared reflection absorption spectroscopy and x-ray reflectivity techniques. Two approaches for preparing and manipulating the monolayers were examined and compared. In the first, PS II CC was compressed immediately after spreading at an initial surface pressure of 5.7 mN/m, whereas in the second, the monolayer was incubated for 30 min at an initial surface pressure of 0.6 mN/m before compression. In the first approach, the protein complex maintained its native alpha-helical conformation upon compression, and the secondary structure of PS II CC was found to be stable for 2 h. The second approach resulted in films showing stable surface pressure below 30 mN/m and the presence of large amounts of beta-sheets, which indicated denaturation of PS II CC. Above 30 mN/m, those films suffered surface pressure instability, which had to be compensated by continuous compression. This instability was correlated with the formation of new alpha-helices in the film. Measurements at 4 degreesC strongly reduced denaturation of PS II CC. The x-ray reflectivity studies indicated that the spread film consists of a single protein layer at the gas-water interface. Altogether, this study provides direct structural and molecular information on membrane proteins when spread in monolayers at the gas-water interface.  相似文献   

11.
A novel cyclic octapeptide carrying a fullerene unit and poly(ethylene glycol) at the side chain (cyclo8-C 60 + PEG) was synthesized, and its monolayer formation at the air/water interface and on a substrate was studied. Surface pressure-area per molecule isotherms indicated that cyclo8-C 60 + PEG formed a stable monolayer at the air/water interface. The cyclo8-C 60 + PEG monolayers prepared from various spreading volumes (i.e., from various initial areas per molecule) overlapped nicely on a single curve, suggesting that the molecules were uniformly dispersed on the surface without aggregation of the fullerene units. The uniform dispersibility is due to the scaffold effect of the cyclic peptide unit to keep the fullerene units away from each other. The formed monolayer could be quantitatively transferred onto a solid substrate. UV-vis absorption spectroscopy of the Langmuir-Blodgett (LB) monolayer showed that the electronic structure of the fullerene unit was not affected by the formation of the monolayer. Cyclic voltammetry of the LB monolayer in an aqueous solution containing redox species indicated that the LB monolayer was densely packed. Furthermore, reversible redox peaks attributed to the one-electron reduction of the fullerene unit were observed, showing that the redox property of the fullerene unit was also retained in the monolayer. It is thus concluded that the cyclic peptide is a good candidate as a scaffold for stable monolayer formation at the air/water interface and for intact immobilization of the fullerene moiety onto a substrate.  相似文献   

12.
A method is described for the preparation and growth of rat pineal monolayer cultures derived from both mature and immature animals. The cultures were observed to undergo profound but reversible morphological differentiations by addition of dibutyryl-cAMP, monobutyryl-cAMP, papaverine, prostaglandins, and adenosine, and by removal of serum. Sodium butyrate and theophylline had no effect. Time-lapse photography indicated that this reversible transformation took place via a contraction-relaxation mechanism. Both colcemid and cytochalasin B inhibited the transformation. These results demonstrate that this type of morphological transformation, previously demonstrated in tumour and embryonic cell cultures, can also occur in nonembryonic, non-neoplastic tissue, and may be related to a general dedifferentiative process occurring in monolayer cultures.  相似文献   

13.
The surface interaction of C-phycocyanin with lipids was studied using the monolayer technique. The surface activity of the protein was found to be higher at the lipid-water interface than at the nitrogen-water interface, particularly at high surface pressures of the lipid monolayer. The maximum initial surface pressures beyond which phycocyanin could not penetrate the dipalmitoylphosphatidylcholine and monogalactosyldiglycerol monolayers were 27 and 30 mN m-1, respectively. Below these values the protein demonstrated preferential interaction with the monogalactosyldiglycerol monolayer. The surface properties of the unfolded protein at pH 2.5 at the lipid-water interface were compared with those of the protein at pH 7.0. Higher affinity of the three-dimensional structure of the protein to lipid monolayers was observed, in particular by high subphase protein concentration. When the lipid films were subjected to oxidation stress by exposure to air, the surface properties of C-phycocyanin and dipalmitoylphosphatidylcholine were not greatly affected but the surface activity of monogalactosyldiacylglycerol was reduced dramatically by autoxidation. The oxidation of monogalactosyldiacylglycerol could not be prevented by the introduction of C-phycocyanin molecules at the lipid-water interface.  相似文献   

14.
A fluorescence microscopic technique was used to observe phase transitions in monolayers of DPPC. The sizes of the domain structures observed were found to be dependent on the rate of compression of the monolayer. The distribution of domain sizes for different rates of compression were unimodal, but the scatter in the sizes was greater during slow compressions.  相似文献   

15.
The affinity of microbial cells for hydrophobic interfaces is important because it directly affects the efficiency of various bioprocesses, including green biotechnologies. The toluene-degrading bacterium Acinetobacter sp. strain Tol 5 has filamentous appendages and a hydrophobic cell surface, shows high adhesiveness to solid surfaces, and self-agglutinates. A "bald" mutant of this bacterium, strain T1, lacks the filamentous appendages and has decreased adhesiveness but retains a hydrophobic cell surface. We investigated the interaction between T1 cells and an organic solvent dispersed in an aqueous matrix. During a microbial-adhesion-to-hydrocarbon (MATH) test, which is frequently used to measure cell surface hydrophobicity, T1 cells adhered to hexadecane droplet surfaces in a monolayer, whereas wild-type cells aggregated on the droplet surfaces. The adsorbed T1 cells on the hexadecane surfaces hindered the coalescence of the droplets formed by vortexing, stabilizing the emulsion phase. Following the replacement of the aqueous phase with fresh pure water after the MATH test, a proportion of the T1 cells that had adsorbed to the hydrocarbon surface detached during further vortexing, suggesting a reversible adsorption of T1 cells. The final ratio of the adhering cells to the total cells in the detachment test coincided with that in the MATH test. The adhesion of T1 cells to the hydrocarbon surface conformed to the Langmuir adsorption isotherm, which describes reversible monolayer adsorption. Reversible monolayer adsorption should be useful for green technologies employing two-liquid-phase partitioning systems and for bioremediation because it allows effective reaction and transport of hydrophobic substrates at oil-water interfaces.  相似文献   

16.
Langmuir isotherms, fluorescence microscopy, and atomic force microscopy were used to study lung surfactant specific proteins SP-B and SP-C in monolayers of dipalmitoylphosphatidylglycerol (DPPG) and palmitoyloleoylphosphatidylglycerol (POPG), which are representative of the anionic lipids in native and replacement lung surfactants. Both SP-B and SP-C eliminate squeeze-out of POPG from mixed DPPG/POPG monolayers by inducing a two- to three-dimensional transformation of the fluid-phase fraction of the monolayer. SP-B induces a reversible folding transition at monolayer collapse, allowing all components of surfactant to remain at the interface during respreading. The folds remain attached to the monolayer, are identical in composition and morphology to the unfolded monolayer, and are reincorporated reversibly into the monolayer upon expansion. In the absence of SP-B or SP-C, the unsaturated lipids are irreversibly lost at high surface pressures. These morphological transitions are identical to those in other lipid mixtures and hence appear to be independent of the detailed lipid composition of the monolayer. Instead they depend on the more general phenomena of coexistence between a liquid-expanded and liquid-condensed phase. These three-dimensional monolayer transitions reconcile how lung surfactant can achieve both low surface tensions upon compression and rapid respreading upon expansion and may have important implications toward the optimal design of replacement surfactants. The overlap of function between SP-B and SP-C helps explain why replacement surfactants lacking in one or the other proteins often have beneficial effects.  相似文献   

17.
The structures formed by a pulmonary surfactant model system of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and recombinant surfactant-associated protein C (SP-C) were studied using scanning force microscopy (SFM) on Langmuir-Blodgett films. The films appeared to be phase separated, in agreement with earlier investigations by fluorescence light microscopy. There were smooth polygonal patches of mostly lipid, surrounded by a corrugated rim rich in SP-C. When the films were compressed beyond the equilibrium surface pressure, the protein-rich phase mediated the formation of layered protrusions. The height of these multilamellar structures embodied equidistant steps slightly higher than a DPPC double layer in the gel phase. At the air-water interface too, a high compressibility at low surface tension was indicative of the exclusion of matter. The exclusion process proved to be fully reversible. The present study demonstrates that some of the matter of the model pulmonary surfactant can move in and out of the active monolayer. The SFM images revealed a lipid-protein complex that was responsible for the reversible exclusion of double-layer structures. This mechanism may be important in the natural system too, to keep the surface tension of the alveolar air/water interface constantly low over the range of area encountered upon breathing.  相似文献   

18.
Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.  相似文献   

19.
Inhaled nanoparticles (NPs) are experienced by the first biological barrier inside the alveolus known as lung surfactant (LS), a surface tension reducing agent, consisting of phospholipids and proteins in the form of the monolayer at the air-water interface. The monolayer surface tension is continuously regulated by the alveolus compression and expansion and protects the alveoli from collapsing. Inhaled NPs can reach deep into the lungs and interfere with the biophysical properties of the lung components. The interaction mechanisms of bare gold nanoparticles (AuNPs) with the LS monolayer and the consequences of the interactions on lung function are not well understood. Coarse-grained molecular dynamics simulations were carried out to elucidate the interactions of AuNPs with simplified LS monolayers at the nanoscale. It was observed that the interactions of AuNPs and LS components deform the monolayer structure, change the biophysical properties of LS and create pores in the monolayer, which all interfere with the normal lungs function. The results also indicate that AuNP concentrations >0.1 mol% (of AuNPs/lipids) hinder the lowering of the LS surface tension, a prerequisite of the normal breathing process. Overall, these findings could help to identify the possible consequences of airborne NPs inhalation and their contribution to the potential development of various lung diseases.  相似文献   

20.
1. The interactions between cytochrome c (native and [(14)C]carboxymethylated) and monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin at the air/water interface was investigated by measurements of surface radioactivity, pressure and potential. 2. On a subphase of 10mm-or m-sodium chloride, penetration of cytochrome c into egg phosphatidylcholine monolayers, as measured by an increase of surface pressure, and the number of molecules penetrating, as judged by surface radioactivity, were inversely proportional to the initial pressure of the monolayer and became zero at 20dynes/cm. The constant of proportionality was increased when the cytochrome c was carboxymethylated or decreased when the phospholipid was hydrogenated, but the cut-off point remained at 20dynes/cm. 3. Penetrated cytochrome c could be removed almost entirely by compression of the phosphatidylcholine monolayer above 20dynes/cm. 4. With phosphatidic acid and cardiolipin monolayers on 10mm-sodium chloride the binding of cytochrome c was much stronger and cytochrome c penetrated into films nearing the collapse pressure (>40dynes/cm.). The penetration was partly electrostatically facilitated, since it was decreased by carrying out the reaction on a subphase of m-sodium chloride, and the relationship between the surface pressure increment and the initial film pressure moved nearer to that observed with phosphatidylcholine. 5. Surface radioactivity determinations showed that [(14)C]carboxymethylated cytochrome c was still adsorbed on phosphatidic acid and cardiolipin monolayers after the cessation of penetration. This adsorption was primarily electrostatic in nature because it could be prevented and substantially reversed by adding m-sodium chloride to the subphase and there was no similar adsorption on phosphatidylcholine films. 6. The penetration into and adsorption on the three phospholipid monolayers was examined as a function of the pH of the subphase and compared with the state of ionization of both the phospholipid and the protein, and the area occupied by the latter at an air/water interface. 7. It is concluded that the binding of cytochrome c to phospholipids can only be partially understood by a consideration of the ionic interaction between the components and that subtle conformational changes in the protein must affect the magnitude and stability of the complex. 8. If cytochrome c is associated with a phospholipid in mitochondria then cardiolipin would fulfil the characteristics of the binding most adequately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号