首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nakano S  Stillman B  Horvitz HR 《Cell》2011,147(7):1525-1536
Although replication-coupled chromatin assembly is known to be important for the maintenance of patterns of gene expression through sequential cell divisions, the role of replication-coupled chromatin assembly in controlling cell differentiation during animal development remains largely unexplored. Here we report that the CAF-1 protein complex, an evolutionarily conserved histone chaperone that deposits histone H3-H4 proteins onto replicating DNA, is required to generate a bilateral asymmetry in the C. elegans nervous system. A mutation in 1 of 24 C. elegans histone H3 genes specifically eliminates this aspect of neuronal asymmetry by causing a defect in the formation of a histone H3-H4 tetramer and the consequent inhibition of CAF-1-mediated nucleosome formation. Our results reveal that replication-coupled nucleosome assembly is necessary to generate a bilateral asymmetry in C. elegans neuroanatomy and suggest that left-right asymmetric epigenetic regulation can establish bilateral asymmetry in the nervous system.  相似文献   

2.
Mutations in the highly conserved Aristaless-related homeodomain protein ARX have been shown to underlie multiple forms of X-linked mental retardation. Arx knockout mice exhibit thinner cerebral cortices because of decreased neural precursor proliferation, and also exhibit defects in the differentiation and migration of GABAergic interneurons. However, the role of ARX in the observed behavioral and developmental abnormalities is unclear. The regulatory functions of individual homeodomain proteins and the networks in which they act are frequently highly conserved across species, although these networks may be deployed in different developmental contexts. In Drosophila, aristaless mutants exhibit defects in the development of terminal appendages, and Aristaless has been shown to function with the LIM-homeodomain protein LIM1 to regulate leg development. Here, we describe the role of the Aristaless/Arx homolog alr-1 in C. elegans. We show that alr-1 acts in a pathway with the LIM1 ortholog lin-11 to regulate the development of a subset of chemosensory neurons. Moreover, we demonstrate that the differentiation of a GABAergic motoneuron subtype is affected in alr-1 mutants, suggesting parallels with ARX functions in vertebrates. Investigating ALR-1 functions in C. elegans may yield insights into the role of this important protein in neuronal development and the etiology of mental retardation.  相似文献   

3.
4.
5.
Zou Y 《Neuron》2006,49(6):787-789
Recent studies have begun to shed light on the molecular guidance cues controlling anterior-posterior axon guidance. Two recent studies in the current issue of Developmental Cell show that Wnts play critical roles in patterning processes and directing neuronal migration in C. elegans. Together with previous findings in vertebrates and flies, these new results establish conserved function of Wnts in A-P guidance.  相似文献   

6.
The human KCNQ gene family encodes potassium channels linked to several genetic syndromes including neonatal epilepsy, cardiac arrhythmia, and progressive deafness. KCNQ channels form M-type potassium channels, which are critical regulators of neuronal excitability that mediate autonomic responses, pain, and higher brain function. Fundamental mechanisms of the normal and abnormal cellular roles for these channels may be gained from their study in simple model organisms. Here we report that a multigene family of KCNQ-like channels is present in the nematode, Caenorhabditis elegans. We show that many aspects of the functional properties, tissue expression pattern, and modulation of these C. elegans channels are conserved, including suppression by the M1 muscarinic receptor. We also describe a conserved mechanism of modulation by diacylglycerol for a subset of C. elegans and vertebrate KCNQ/KQT channels, which is dependent upon the carboxyl-terminal domains of channel subunits and activated protein kinase C.  相似文献   

7.
8.
The nudF and nudC genes of the fungus Aspergillus nidulans encode proteins that are members of two evolutionarily conserved families. In A. nidulans these proteins mediate nuclear migration along the hyphae. The human ortholog of nudF is Lis1, a gene essential for neuronal migration in the developing cerebral cortex. The mammalian ortholog of nudC encodes a protein that interacts with Lis1. We have identified orthologs of nudC and Lis1 from the nematode Caenorhabditis elegans. Heterologous expression of the C. elegans nudC ortholog, nud-1, complements the A. nidulans nudC3 mutant, demonstrating evolutionary conservation of function. A C. elegans nud-1::GFP fusion produces sustained fluorescence in sensory neurons and embryos, and transient fluorescence in the gonad, gut, vulva, ventral cord, and hypodermal seam cells. Fusion of GFP to C. elegans lis-1 revealed expression in all major neuronal processes of the animal as well as the multinucleate spermathecal valves and adult seam cells. Phenotypic analysis of either nud-1 and lis-1 by RNA interference yielded similar phenotypes, including embryonic lethality, sterility, altered vulval morphology, and uncoordinated movement. Digital time-lapse video microscopy was used to determine that RNAi-treated embryos exhibited nuclear positioning defects in early embryonic cell division similar to those reported for dynein/dynactin depletion. These results demonstrate that the LIS-1/NUDC-like proteins of C. elegans represent a link between nuclear positioning, cell division, and neuronal function.  相似文献   

9.
Inoue T  Ailion M  Poon S  Kim HK  Thomas JH  Sternberg PW 《Genetics》2007,177(2):809-818
Molecular changes that underlie evolutionary changes in behavior and physiology are not well understood. Dauer formation in Caenorhabditis elegans is a temperature-sensitive process controlled through a network of signaling pathways associated with sensory neurons and is potentially an excellent system in which to investigate molecular changes in neuronal function during evolution. To begin to investigate the evolution of dauer formation in the genus Caenorhabditis at the molecular level, we isolated dauer-formation mutations in C. briggsae, a species closely related to the model organism C. elegans. We identified mutations in orthologs of C. elegans genes daf-2 (insulin receptor), daf-3 (Smad), and daf-4 (TGF-beta type 2 receptor), as well as genes required for formation of sensory cilia. Phenotypic analyses revealed that functions of these genes are conserved between C. elegans and C. briggsae. Analysis of C. briggsae mutations also revealed a significant difference between the two species in their responses to high temperatures (>26 degrees). C. elegans is strongly induced to form dauers at temperatures above 26 degrees, near the upper limit for growth of C. elegans. In contrast, C. briggsae, which is capable of growth at higher temperatures than C. elegans, lacks this response.  相似文献   

10.
Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity.  相似文献   

11.
The neuron is a prime example of a highly polarized cell. It is becoming clear that conserved protein complexes, which have been shown to regulate polarity in such diverse systems as the C. elegans zygote and mammalian epithelia, are also required for neuronal polarization. This review considers the role of these polarity proteins in axon specification and synaptogenesis.  相似文献   

12.
To ensure precise neurotransmission and prevent neurotoxic accumulation, l-glutamate (Glu), the major excitatory neurotransmitter in the brain, is cleared from the synapse by glutamate transporters (GluTs). The molecular components of Glu synapses are highly conserved between Caenorhabditis elegans and mammals, yet the absence of synaptic insulation in C. elegans raises fundamental questions about Glu clearance strategies in the nematode nervous system. To gain insight into how Glu clearance is accomplished and how GluTs impact neurotransmission, we probed expression and function of all 6 GluTs found in the C. elegans genome. Disruption of each GluT impacts multiple Glu-dependent behaviors, with GluT combinations commonly increasing the severity of behavioral deficits. Interestingly, the sole GluT that we find expressed in neurons is localized predominantly in presynaptic neurons, in contrast to the postsynaptic concentration of neuronal GluTs typical in mammals. Moreover, 3 of the 6 GluT genes appear strongly expressed on the capillary excretory canal cell, where they affect Glu-dependent behaviors from positions distal to glutamatergic circuits. Indeed, our focused study of GLT-3, one of the distally expressed GluTs, shows that despite this distance, GLT-3 function can balance the activity mediated by synaptic release and synaptic receptors. The effects of distal GluTs on glutamatergic circuits support that Glu diffusion outside the vicinity of the synapse is a critical factor in C. elegans neurotransmission. Together with the presynaptic localization of neuronal GluTs, these observations suggest an unusual strategy for Glu clearance in C. elegans.  相似文献   

13.
14.
MicroRNAs and developmental timing   总被引:1,自引:0,他引:1  
MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.  相似文献   

15.
The UNC-119 proteins, found in all metazoans examined, are highly conserved at both the sequence and functional levels. In the invertebrates Caenorhabditis elegans and Drosophila melanogaster, unc-119 genes are expressed pan-neurally. Loss of function of the unc-119 gene in C. elegans results in a disorganized neural architecture and paralysis. The function of UNC-119 proteins has been conserved throughout evolution, as transgenic expression of the human UNC119 gene in C. elegans unc-119 mutants restores a wild-type phenotype. However, the nature of the conserved molecular function of UNC-119 proteins is poorly understood. Although unc-119 genes are expressed throughout the nervous system of the worm and fly, the analysis of these genes in vertebrates has focused on their function in the photoreceptor cells of the retina. Here we report the characterization of an unc-119 homolog in the zebrafish. The Unc119 protein is expressed in various neural tissues in the developing zebrafish embryo and larva. Morpholino oligonucleotide (MO)-mediated knockdown of Unc119 protein results in a "curly tail down" phenotype. Examination of neural patterning demonstrates that these "curly tail down" zebrafish experience a constellation of neuronal defects similar to those seen in C. elegans unc-119 mutants: missing or misplaced cell bodies, process defasciculation, axon pathfinding errors, and aberrant axonal branching. These findings suggest that UNC-119 proteins may play an important role in the development and/or function of the vertebrate nervous system.  相似文献   

16.
Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior.  相似文献   

17.
TRIpartite Motif(TRIM) family proteins are ring finger domain-containing,multi-domain proteins implicated in many biological processes. Members of the TRIM-9/C-I subfamily of TRIM proteins,including TRIM-9,MIDI and MID2,have neuronal functions and are associated with neurological diseases.To explore whether the functions of C-I TRIM proteins are conserved in invertebrates,we analyzed Caenorhabditis elegans and Drosophila trim-9 mutants.C.elegans trim-9 mutants exhibit defects in the ventral guidance of h...  相似文献   

18.
Caenorhabditis elegans is a model organism in biology, yet despite the tremendous information generated from genetic, genomic and functional analyses, C. elegans has rarely been used to address questions in ecological genetics. Here, we analyse genetic variation for chemosensory behaviour, an ecologically important trait that is also genetically well characterized, at both the phenotypic and molecular levels within three species of the genus Caenorhabditis. We show that the G-protein ODR-3 plays an important role in chemosensory avoidance behaviour and identify orthologues of odr-3 in C. briggsae and C. remanei. Both quantitative genetic analysis of chemosensory behaviour and molecular population genetic analysis of odr-3 show that there is little genetic variation among a worldwide collection of isolates of the primarily selfing C. elegans, whereas there is substantially more variation within a single population of the outcrossing C. remanei. Although there are a large number of substitutions at silent sites within odr-3 among the three species, molecular evolution at the protein level is extremely conserved, suggesting that odr-3 plays an important role in cell signalling during chemosensation and/or neuronal cilia development in C. remanei and in C. briggsae as it does in C. elegans. Our results suggest that C. remanei may be a more suitable subject for ecological and evolutionary genetic studies than C. elegans.  相似文献   

19.
Ma DK  Vozdek R  Bhatla N  Horvitz HR 《Neuron》2012,73(5):925-940
The C. elegans HIF-1 proline hydroxylase EGL-9 functions as an O(2) sensor in an evolutionarily conserved pathway for adaptation to hypoxia. H(2)S accumulates during hypoxia and promotes HIF-1 activity, but how H(2)S signals are perceived and transmitted to modulate HIF-1 and animal behavior is unknown. We report that the experience of hypoxia modifies a C. elegans locomotive behavioral response to O(2) through the EGL-9 pathway. From genetic screens to identify novel regulators of EGL-9-mediated behavioral plasticity, we isolated mutations of the gene cysl-1, which encodes a C. elegans homolog of sulfhydrylases/cysteine synthases. Hypoxia-dependent behavioral modulation and H(2)S-induced HIF-1 activation require the direct physical interaction of CYSL-1 with the EGL-9 C terminus. Sequestration of EGL-9 by CYSL-1 and inhibition of EGL-9-mediated hydroxylation by hypoxia together promote neuronal HIF-1 activation to modulate behavior. These findings demonstrate that CYSL-1 acts to transduce signals from H(2)S to EGL-9 to regulate O(2)-dependent behavioral plasticity in C. elegans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号