首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tissue-specific stem cells combine proliferative and asymmetric divisions to balance self-renewal with differentiation. Tight regulation of the orientation and plane of cell division is crucial in this process. Here, we study the reproducible pattern of anterior-posterior-oriented stem cell-like divisions in the Caenorhabditis elegans seam epithelium. In a genetic screen, we identified an alg-1 Argonaute mutant with additional and abnormally oriented seam cell divisions. ALG-1 is the main subunit of the microRNA-induced silencing complex (miRISC) and was previously shown to regulate the timing of postembryonic development. Time-lapse fluorescence microscopy of developing larvae revealed that reduced alg-1 function successively interferes with Wnt signaling, cell adhesion, cell shape and the orientation and timing of seam cell division. We found that Wnt inactivation, through mig-14 Wntless mutation, disrupts tissue polarity but not anterior-posterior division. However, combined Wnt inhibition and cell shape alteration resulted in disordered orientation of seam cell division, similar to the alg-1 mutant. Our findings reveal additional alg-1-regulated processes, uncover a previously unknown function of Wnt ligands in seam tissue polarity, and show that Wnt signaling and geometric cues redundantly control the seam cell division axis.  相似文献   

3.
In Caenorhabditis elegans, Wnt signaling pathways are important in controlling cell polarity and cell migrations. In the embryo, a novel Wnt pathway functions through a (beta)-catenin homolog, WRM-1, to downregulate the levels of POP-1/Tcf in the posterior daughter of the EMS blastomere. The level of POP-1 is also lower in the posterior daughters of many anteroposterior asymmetric cell divisions during development. I have found that this is the case for of a pair of postembryonic blast cells in the tail. In wild-type animals, the level of POP-1 is lower in the posterior daughters of the two T cells, TL and TR. Furthermore, in lin-44/Wnt mutants, in which the polarities of the T cell divisions are frequently reversed, the level of POP-1 is frequently lower in the anterior daughters of the T cells. I have used a novel RNA-mediated interference technique to interfere specifically with pop-1 zygotic function and have determined that pop-1 is required for wild-type T cell polarity. Surprisingly, none of the three C. elegans (beta)-catenin homologs appeared to function with POP-1 to control T cell polarity. Wnt signaling by EGL-20/Wnt controls the migration of the descendants of the QL neuroblast by regulating the expression the Hox gene mab-5. Interfering with pop-1 zygotic function caused defects in the migration of the QL descendants that mimicked the defects in egl-20/Wnt mutants and blocked the expression of mab-5. This suggests that POP-1 functions in the canonical Wnt pathway to control QL descendant migration and in novel Wnt pathways to control EMS and T cell polarities.  相似文献   

4.
The three Caenorhabditis elegans beta-catenin each function in distinct processes: BAR-1 in canonical Wnt signaling that controls cell fates and cell migrations, HMP-2 in cell adhesion and WRM-1 in Wnt signaling pathways that function in conjunction with a mitogen-activated kinase (MAPK) pathway to control the orientations, or cell polarities, of cells that undergo asymmetric cell divisions. In addition, WRM-1 does not interact with the canonical beta-catenin binding site in POP-1/Tcf. Thus, Wnt signaling through WRM-1 is noncanonical and, except for one division that might not include any of the three C. elegans beta-catenin, controls cell polarity in C. elegans.  相似文献   

5.
6.
In Caenorhabditis elegans, Wnt signaling regulates many asymmetric cell divisions. During embryogenesis, the C. elegans Dishevelled (Dsh) homolog, DSH-2, regulates asymmetric neuroblast division of the ABpl/rpppa blast cell. Dsh is a key intracellular component of both β-catenin dependent and β-catenin independent Wnt pathways. In C. elegans, most of the well-characterized asymmetric cell divisions regulated by Wnts are dependent on β-catenin. In the ABpl/rpppa neuroblast division, however, we determined that DSH-2 regulates cell polarity through a β-catenin independent Wnt pathway. We also established that the C. elegans Wnt homolog, cwn-1, functions to regulate asymmetric division of the ABpl/rpppa blast cell. Our results indicated that cwn-1 does not act alone in this process, and it functions with another redundant ligand that appears not to be a Wnt. Finally, we show widespread requirements for DSH-2 during embryogenesis in the generation of many other neurons. In particular, DSH-2 function is necessary for the correct production of the embryonic ventral cord motor neurons. This study demonstrates a role for DSH-2 and Wnt signaling in neuronal specification during C. elegans embryogenesis.  相似文献   

7.
Asymmetric cell division plays a fundamental role in generating various types of embryonic cell. In ascidian embryos, asymmetric cell divisions occur in the vegetal hemisphere in a manner similar to those found in Caenorhabditis elegans. Early divisions in embryos of both species involve inductive events on a single mother cell that result in production of daughters with different cell fates. Here we show in the ascidian Halocynthia roretzi that polarity of muscle/mesenchyme mother precursors is determined solely by the direction from which the FGF9/16/20 signal is presented, a role similar to that of Wnt signaling in the EMS and T cell divisions in C. elegans. However, polarity of nerve cord/notochord mother precursors is determined by possible antagonistic action between the FGF signal and a signal from anterior ectoderm, providing a new mechanism underlying asymmetric cell division. The ectoderm signal suppresses MAPK activation and expression of Hr-FoxA, which encodes an intrinsic competence factor for notochord induction, in the nerve cord lineage.  相似文献   

8.
The polarities of several cells that divide asymmetrically during Caenorhabditis elegans development are controlled by Wnt signaling. LIN-44/Wnt and LIN-17/Fz control the polarities of cells in the tail of developing C. elegans larvae, including the male-specific blast cell, B, that divides asymmetrically to generate a larger anterior daughter and a smaller posterior daughter. We determined that WRM-1 and the major canonical Wnt pathway components: BAR-1, SGG-1/GSK-3 and PRY-1/Axin were not involved in the control of B cell polarity. However, POP-1/Tcf is involved and is asymmetrically distributed to the B daughter nuclei, as it is in many cell divisions during C. elegans development. Aspects of the B cell division are reminiscent of the divisions controlled by the planar cell polarity (PCP) pathway that has been described in both Drosophila and vertebrate systems. We identified C. elegans homologs of Wnt/PCP signaling components and have determined that many of them appear to be involved in the regulation of B cell polarity. Specifically, MIG-5/Dsh, RHO-1/RhoA and LET-502/ROCK appear to play major roles, while other PCP components appear to play minor roles. We conclude that a noncanonical Wnt pathway, which is different from other Wnt pathways in C. elegans, regulates B cell polarity.  相似文献   

9.
PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor with functions in various processes ranging from embryonic morphogenesis to epidermal wound repair. Here, we review recent findings indicating that PTK7 is a versatile co-receptor that functions as a molecular switch in Wnt, Semaphorin/Plexin and VEGF signaling pathways. We focus in particular on the role of PTK7 in Wnt signaling, as recent data indicate that PTK7 acts as a Wnt co-receptor, which activates the planar cell polarity pathway, but inhibits canonical Wnt signaling.  相似文献   

10.
Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway, which regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/b-catenin signaling pathway, involving the b-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIa functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIa in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIa may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.  相似文献   

11.
Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway that regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/β-catenin signaling pathway, involving the β-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIα functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIα in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIα may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.Key words: C. elegans, kin-19, casein kinase Ialpha (CKIα), Wnt, stem cell, asymmetric cell division, heterochronic, temporal identity, terminal differentiation, self-renewal  相似文献   

12.
13.
Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/beta-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as beta-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A(1) (PLA(1)), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of beta-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA(1) gene, cortical beta-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of beta-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of beta-catenin.  相似文献   

14.
In C. elegans, a bilateral pair of neuroblasts, QL and QR, give rise to cells that migrate in opposite directions along the anteroposterior (A/P) body axis. QL and its descendants migrate posteriorly whereas QR and its descendants migrate anteriorly. We find that a Wnt family member, EGL-20, acts in a dose-dependent manner to specify these opposite migratory behaviors. High levels of EGL-20 promote posterior migration by activating a canonical Wnt signal transduction pathway, whereas low levels promote anterior migration by activating a separate, undefined pathway. We find that the two Q cells respond differently to EGL-20 because they have different response thresholds. Thus, in this system two distinct dose-dependent responses are specified not by graded levels of the Wnt signal, but instead by left-right asymmetrical differences in the cellular responsiveness to Wnt signaling.  相似文献   

15.
The orientation of cell division has a crucial role in early embryo body plan specification, axis determination and cell fate diversity generation, as well as in the morphogenesis of tissues and organs. In many instances, cell division orientation is regulated by the planar cell polarity (PCP) pathways: the Wnt/Frizzled non-canonical pathway or the Fat/Dachsous/Four-jointed pathway. Firstly, using asymmetric cell division in both Drosophila and C. elegans, we describe the central role of the Wnt/Frizzled pathway in the regulation of asymmetric cell division orientation, focusing on its cooperation with either the Src kinase pathway or the heterotrimeric G protein pathway. Secondly, we describe our present understanding of the mechanisms by which the planar cell polarity pathways drive tissue morphogenesis by regulating the orientation of symmetric cell division within a field of cells. Finally, we will discuss the important avenues that need to be explored in the future to better understand how planar cell polarity pathways control embryo body plan determination, cell fate specification or tissue morphogenesis by mitotic spindle orientation.  相似文献   

16.
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.  相似文献   

17.
Embryonic patterning has traditionally been viewed as the establishment of spatially significant gene expression in response to secreted signals. Recent work has highlighted the role of the Wnt/planar cell polarity (PCP) pathway in patterning tissues. Rather than establishing characteristic arrays of gene expression, however, this pathway functions to institute uniform polarity of cells within a tissue. Cells thus polarized can undergo directed migrations, cell divisions, etc., which are essential for normal morphogenesis. In this review, I will highlight the similarities between mechanisms that establish patterns of polarity between Drosophila and vertebrates. Further, I will discuss recent advances with regard to Wnt/PCP signaling in vertebrates.  相似文献   

18.
19.
Asymmetric cell division is a mechanism for achieving cellular diversity. In C. elegans, many asymmetric cell divisions are controlled by the Wnt-MAPK pathway through POP-1/TCF. It is poorly understood, however, how POP-1 determines the specific fates of daughter cells. We found that nob-1/Hox, ceh-20/Pbx, and a Meis-related gene, psa-3, are required for asymmetric division of the T hypodermal cell. psa-3 expression was asymmetric between the T cell daughters, and it was regulated by POP-1 through a POP-1 binding site in the psa-3 gene. psa-3 expression was also regulated by NOB-1 and CEH-20 through a NOB-1 binding sequence in a psa-3 intron. PSA-3 can bind CEH-20 and function after the T cell division to promote the proper fate of the daughter cell. These results indicate that cooperation between Wnt signaling and a Hox protein functions to determine the specific fate of a daughter cell.  相似文献   

20.
During C. elegans development, Wnt/WG signaling is required for differences in cell fate between sister cells born from anterior/posterior divisions. A beta-catenin-related gene, wrm-1, and the lit-1 gene are effectors of this signaling pathway and appear to downregulate the activity of POP-1, a TCF/LEF-related protein, in posterior daughter cells. We show here that lit-1 encodes a serine/threonine protein kinase homolog related to the Drosophila tissue polarity protein Nemo. We demonstrate that the WRM-1 protein binds to LIT-1 in vivo and that WRM-1 can activate the LIT-1 protein kinase when coexpressed in vertebrate tissue culture cells. This activation leads to phosphorylation of POP-1 and to apparent changes in its subcellular localization. Our findings provide evidence for novel regulatory avenues for an evolutionarily conserved Wnt/WG signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号