共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultures of Bacillus stearothermophilus subjected to a temperature shift-up or shift-down of 15 degrees C within the normal temperature range of growth (45 to 65 degrees C) enter a transient adaptation period before exponential growth at the new temperature. The de novo synthesis of some proteins coincides with the adaptation period. 相似文献
2.
A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus stearothermophilus and Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyrA-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes in Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis. 相似文献
3.
An efficient protoplast transformation system was established for Bacillus stearothermophilus NUB3621 using thermophilic plasmid pTHT15 Tcr (4.5 kb) and mesophilic plasmid pLW05 Cmr (3 kb), a spontaneous deletion derivative of pPL401 Cmr Kmr. The efficiency of transformation of NUB3621 with pLW05 and pTHT15 was 2 x 10(7) to 4 x 10(8) transformants per micrograms DNA. The transformation frequency (transformants per regenerant) was 0.5 to 1.0. Chloramphenicol-resistant and tetracycline-resistant transformants were obtained when competent cells of Bacillus subtilis were transformed with pLW05 [2.5 x 10(5) transformants (microgram DNA)-1] and pTHT15 [1.8 x 10(5) transformants (micrograms DNA)-1], respectively. Thus, these plasmids are shuttle vectors for mesophilic and thermophilic bacilli. Plasmid pLW05 Cmr was not stably maintained in cultures growing at temperatures between 50 and 65 degrees C but the thermostable chloramphenicol acetyltransferase was active in vivo at temperatures up to 70 degrees C. In contrast, thermophilic plasmid pTHT15 Tcr was stable in cultures growing at temperatures up to 60 degrees C but the tetracycline resistance protein was relatively thermolabile at higher temperatures. The estimated copy number of pLW05 in cells of NUB3621 growing at 50, 60, and 65 degrees C was 69, 18, and 1 per chromosome equivalent, respectively. The estimated copy number of pTHT15 in cells of NUB3621 growing at 50 or 60 degrees C was about 41 to 45 per chromosome equivalent and 12 in cells growing at 65 degrees C. 相似文献
4.
5.
F. J. Slack J. R Mueller M. A. Strauch C. Mathiopoulos † A. L. Sonenshein 《Molecular microbiology》1991,5(8):1915-1925
6.
Cloning and characterization of acetohydroxyacid synthase from Bacillus stearothermophilus 下载免费PDF全文
Porat I Vinogradov M Vyazmensky M Lu CD Chipman DM Abdelal AT Barak Z 《Journal of bacteriology》2004,186(2):570-574
Five genes from the ilv-leu operon from Bacillus stearothermophilus have been sequenced. Acetohydroxyacid synthase (AHAS) and its subunits were separately cloned, purified, and characterized. This thermophilic enzyme resembles AHAS III of Escherichia coli, and regulatory subunits of AHAS III complement the catalytic subunit of the AHAS of B. stearothermophilus, suggesting that AHAS III is functionally and evolutionally related to the single AHAS of gram-positive bacteria. 相似文献
7.
8.
9.
Glutamine synthetase [EC 6.3.2.1] from Bacillus stearothermophilus was modified with diethyl malonimidate (DEM), dimethyl adipimidate (DMA), and dimethyl suberimidate (DMS). DMA modified most epsilon-amino groups. On modification with DMA, formation of 3 to 4 cross-links/subunit resulted in a large increase in thermostability. The activity, allosteric properties and fluorescence spectrum of the enzyme were not changed on cross-linking. The SDS-polyacrylamide gel electrophoretic profiles of DEM-, DMA-, and DMS-modified enzymes suggested that the interaction berween six subunits in each of the two hexagonal rings of the protein are heterologous and are different from those between the piled subunits on different rings. 相似文献
10.
Cloning and characterization of the gene for a methanol-utilising alcohol dehydrogenase from Bacillus stearothermophilus 总被引:2,自引:0,他引:2
The cloning and characterization of the alcohol dehydrogenase (ADH) gene (adh) from Bacillus stearothermophilus strain DSM2334, an obligate aerobe, are described. The clone directed the synthesis of ADH as judged on Western blots, activity gels and tetrazolium plates. It specified an enzyme that oxidised methanol as well as ethanol. The enzyme was found to be encoded by a single gene in B. stearothermophilus which did not cross-hybridize to adh clones from Escherichia coli, yeast or maize. The cloned gene was expressed in E. coli but activity was not detected in Bacillus subtilis, despite stable maintenance of the recombinant plasmid in this host. The gene is catabolite-repressed in DSM2334. 相似文献
11.
Abstract We have cloned and expressed a novel maltogenic alpha-amylase from B. stearothermophilus on plasmid in B. subtilis . Originally the plasmid was very unstable in the absence of selection, but was stabilized due to a spontaneous, copy number reducing mutation. The promoter region and the extension of the gene have been analysed, and a provisional DNA sequence has been determined. The N-terminal of the mature amylase has been determined and shown to be in accordance with signal peptidase processing after a typical Gram-positive signal sequence of 33 amino acids. 相似文献
12.
Purification and properties of glutamine synthetase from Bacillus stearothermophilus 总被引:1,自引:0,他引:1
A Hachimori A Matsunaga M Shimizu T Samejima Y Noso 《Biochimica et biophysica acta》1974,350(2):461-474
13.
The structural gene for a thermostable alpha-amylase from Bacillus stearothermophilus was cloned in plasmids pTB90 and pTB53. It was expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about fivefold more alpha-amylase (20.9 U/mg of dry cells) than did the wild-type strain of B. stearothermophilus. Some properties of the alpha-amylases that were purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant differences were observed among the enzyme properties despite the difference in host cells. It was found that the alpha-amylase, with a molecular weight of 53,000, retained about 60% of its activity even after treatment at 80 degrees C for 60 min. 相似文献
14.
15.
Altered regulation of the glnRA operon in a Bacillus subtilis mutant that produces methionine sulfoximine-tolerant glutamine synthetase. 下载免费PDF全文
A Bacillus subtilis mutant that produced glutamine synthetase (GS) with altered sensitivity to DL-methionine sulfoximine was isolated. The mutation, designated glnA33, was due to a T.A-to-C.G transition, changing valine to alanine at codon 190 within the active-site C domain. Altered regulation was observed for GS activity and antigen and mRNA levels in a B. subtilis glnA33 strain. The mutant enzyme was 28-fold less sensitive to DL-methionine sulfoximine and had a 13.0-fold-higher Km for hydroxylamine and a 4.8-fold-higher Km for glutamate than wild-type GS did. 相似文献
16.
Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. 总被引:4,自引:0,他引:4 下载免费PDF全文
S Bower J B Perkins R R Yocum C L Howitt P Rahaim J Pero 《Journal of bacteriology》1996,178(14):4122-4130
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene. 相似文献
17.
Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. 下载免费PDF全文
S Bower J Perkins R R Yocum P Serror A Sorokin P Rahaim C L Howitt N Prasad S D Ehrlich J Pero 《Journal of bacteriology》1995,177(9):2572-2575
The Bacillus subtilis birA gene, which regulates biotin biosynthesis, has been cloned and characterized. The birA gene maps at 202 degrees on the B. subtilis chromosome and encodes a 36,200-Da protein that is 27% identical to Escherichia coli BirA protein. Three independent mutations in birA that lead to deregulation of biotin synthesis alter single amino acids in the amino-terminal end of the protein. The amino-terminal region that is affected by these three birA mutations shows sequence similarity to the helix-turn-helix DNA binding motif previously identified in E. coli BirA protein. B. subtilis BirA protein also possesses biotin-protein ligase activity, as judged by its ability to complement a conditional lethal birA mutant of E. coli. 相似文献
18.
19.
20.
The Bacillus stearothermophilus no. 236 gene encoding the bifunctional enzyme HprK/P, the key regulator of carbon catabolite repression/activation (CCR/CCA) in most Gram-positive bacteria, was cloned and the (His)(6)-tagged gene product was characterized in detail. The nucleotide sequence of the hprK/P gene corresponded to an open reading frame of 951 bp that encoded a polypeptide of 316 amino acid residues with a calculated molecular mass of 35,458 Da. The deduced amino acid sequence of the B. stearothermophilus no. 236 HprK/P showed 64.5% identity with the B. subtilis enzyme, allowing us to identify two highly conserved motifs, the nucleotide binding P-loop (Walker motif A) and the HprK/P family signature sequence in the C-terminal half of the protein. Furthermore, complementation experiments showed that the cloned hprK/P gene product was functionally active in the B. subtilis cells. The purified (His)(6)-tagged B. stearothermophilus no. 236 HprK/P migrated on SDS-PAGE gel as a single species with a molecular mass of about 36 kDa, and behaved in gel filtration like a hexameric protein. The recombinant protein catalyzes the pyrophosphate (PPi)-dependent (highest activity at pH 7.0 and 40 degrees C) as well as the ATP-dependent phosphorylation of Ser46 in HPr (maximum activity at pH 8.0 and 45 degrees C). It also catalyzes the inorganic phosphate-dependent dephosphorylation (phosphorolysis) of seryl-phosphorylated HPr, optimally at pH 6.5 and 40 degrees C. BIAcore surface resonance analysis confirmed that a divalent cation, preferentially Mg(2+), was an indispensable cofactor for the three activities of the HprK/P. Fructose-1,6-bisphosphate (FBP) was observed to stimulate ATP-dependent kinase activity, while inorganic phosophate (Pi) inhibited ATP-dependent kinase activity. Mutations in the Walker motif A simultaneously abolished both types of kinase and phosphorylase activities. On the other hand, the conserved signature residues were confirmed to be involved in the PPi-dependent kinase and phosphorylase reactions. 相似文献