首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the simultaneous determination of selegiline and its metabolite, desmethylselegiline, in human whole blood and urine is presented. The method, which combines a fiber-based headspace solid-phase microextraction (SPME) technique with gas chromatography-mass spectrometry (GC-MS), required optimization of various parameters (e.g., salt additives, extraction temperatures, extraction times and the extraction properties of the SPME fiber coatings). Pargyline was used as the internal standard. Extraction efficiencies for both selegiline and desmethylselegiline were 2.0-3.4% for whole blood, and 8.0-13.2% for urine. The regression equations for selegiline and desmethylselegiline extracted from whole blood were linear (r(2)=0.996 and 0.995) within the concentration ranges 0.1-10 and 0.2-20 ng/ml, respectively. For urine, the regression equations for selegiline and desmethylselegiline were linear (r(2)=0.999 and 0.998) within the concentration ranges 0.05-5.0 and 0.1-10 ng/ml, respectively. The limit of detection for selegiline and desmethylselegiline was 0.01-0.05 ng/ml for both samples. The lower and upper limits of quantification for each compound were 0.05-0.2 and 5-20 ng/ml, respectively. Intra- and inter-day coefficients of variation for selegiline and desmethylselegiline in both samples were not greater than 8.7 and 11.7%, respectively. The determination of selegiline and desmethylselegiline concentrations in Parkinson's disease patients undergoing continuous selegiline treatment is presented and is shown to validate the present methodology.  相似文献   

2.
Alkylphenols, 4-nonylphenol (NP) and 4-tert-octylphenol (OP), in human urine and plasma samples were analyzed using stir bar sorptive extraction (SBSE) in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The method involved correction by stable isotopically labeled surrogate standards, 4-(1-methyl)octylphenol-d5 (m-OP-d5) and deuterium 4-tert-octylphenol (OP-d). A biological sample was extracted for 60 min at room temperature (25 degrees C) using a stir bar coated with a 500 microm thick polydimethylsiloxane (PDMS) layer. Then, the stir bar was analyzed by TD-GC-MS in the selected ion monitoring (SIM) mode without any derivatization step. The average recoveries in human urine and plasma samples spiked with NP and OP at levels of 0.5 and 10 ng ml-1 were between 95.8 and 99.8% with correction using the added surrogate standards. The limits of quantitation were 0.2 ng ml-1 for NP and 0.02 ng ml-1 for OP. We measured the background levels of NP and OP in five human urine and three human plasma samples from healthy volunteers. NP and OP were not detected in all human urine samples (N.D. < 0.2 ng ml-1 for NP, and N.D. < 0.02 ng ml-1 for OP). However, 0.2-0.3 ng ml-1 for NP and 0.1-0.2 ng ml-1 for OP in human plasma samples were observed by this method.  相似文献   

3.
A simple high-performance liquid chromatography (HPLC)-tandem mass spectrometric method has been developed for determination of propiverine hydrochloride and its metabolite, propiverine N-oxide (M-1) in human plasma using stable isotopes, propiverine hydrochloride-d10 and M-1-d10, as internal standards. The analytes were extracted with dichloromethane from 0.2 ml of plasma in neutral condition (pH 7.0) and separated by HPLC on a C18 reversed-phase column using methanol-1% acetic acid (50:50) as a mobile phase, and detected using positive electrospray ionization in selected reaction monitoring (SRM) mode. The method was validated over a concentration range of 2-500 ng/ml for propiverine hydrochloride and 4-1000 ng/ml for M-1 using 0.2 ml of human plasma per assay. The method developed was successfully applied to analysis of propiverine hydrochloride and M-1 in clinical studies.  相似文献   

4.
An isocratic online-enrichment HPLC-assay was developed allowing for the simple and fast separation and quantitation of STI-571 and its main metabolite N-desmethyl-STI (N-DesM-STI) in plasma, urine, cerebrospinal fluid (CSF), culture media and cell preparations in various concentrations using UV-detection at 260 nm. The analytical procedure consists of an online concentration of STI-571 and N-DesM-STI in the HPLC system followed by the elution on a ZirChrom-PBD analytical column. Time of analysis is 40 min including the enrichment time of 5 min. The detection limit is 10 ng/ml in plasma, CSF, culture medium (RPMI) and 25 ng/ml in urine for both STI-571 and N-DesM-STI. The intra-day precision, as expressed by the coefficient of variation (CV), in plasma samples ranges between 1.74 and 8.60% for STI-571 and 1.45 and 8.87% for N-DesM-STI. The corresponding values for urine measurements are 2.17-7.54% (STI-571) and 1.31-9.51% (N-DesM-STI). The inter-day precision analyzed over a 7-month time period was 8.31% (STI-571) or 6.88% (N-DesM-STI) and 16.45% (STI-571) or 14.83% (N-DesM-STI) for a concentration of 1000 ng/ml in plasma and 750 ng/ml in urine, respectively. Moreover, we demonstrate that with an alternative, but more time and labor consuming sample preparation and the implementation of electrochemical detection, a detection limit < 10 ng/ml can be achieved. The method described was used to perform pharmacokinetic measurements of STI-571 and N-desmethyl-STI in patient samples and for kinetic measurements of intracellular STI-571 and N-DesM-STI following in vitro incubation.  相似文献   

5.
We have presented a simple and sensitive method for determining pethidine, a narcotic analgesic drug in body fluids by gas chromatography-tandem mass spectrometry (GC-MS/MS). Pethidine and 4'-piperidinoacetophenone (internal standard) were extracted from body fluids with Bond Elut C(18) columns; the recoveries were above 85% for both compounds. The calibration curves for blood and urine showed good linearities in the range of 1.25-40 ng/ml. Its detection limits (signal-to-noise ratio=3) were estimated to be approximately 0.5 ng/ml of whole blood and urine.  相似文献   

6.
To prove the intake of recently controlled designer drugs, N-benzylpiperazine (BZP) and 1-(3-trifluoromethylphenyl)piperazine (TFMPP), a simple, sensitive and reliable method which allows us to simultaneously detect BZP, TFMPP and their major metabolite in human urine has been established by coupling gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). GC-MS accompanied by trifluoroacetyl (TFA) derivatization and LC-MS analyses were performed after the enzymatic hydrolysis and the solid phase extraction with OASIS HLB, and BZP, TFMPP and their major metabolites, 4'-hydroxy-BZP (p-OH-BZP), 3'-hydroxy-BZP (m-OH-BZP) and 4'-hydroxy-TFMPP (p-OH-TFMPP), have found to be satisfactorily separated on a semi-micro SCX column with acetonitrile-40 mM ammonium acetate buffer (pH 4) (75:25, v/v) as the eluent. The detection limits produced by GC-MS were estimated to be from 50 ng/ml to 1 microg/ml in the scan mode, and from 200 to 500 ng/ml in the selected ion monitoring (SIM) mode. Upon applying the LC-ESI-MS technique, the linear calibration curves were obtained by using the SIM mode for all analytes in the concentration range from 10 ng/ml to 10 microg/ml. The detection limits ranged from 5 to 40 ng/ml in the scan mode, and from 0.2 to 1 ng/ml in the SIM mode. These results indicate the high reliability and sensitivity of the present procedure, and this procedure will be applicable for proof of intake of BZP and TFMPP in forensic toxicology.  相似文献   

7.
A simple determination method of amphetamine (AP) and methamphetamine (MA) in biological materials was developed using on-column derivatization and gas chromatography-mass spectrometry (GC-MS). AP and MA in biological materials were adsorbed on the surface of Extrelut and then extracted and derivatized simultaneously on the Extrelut column. AP and MA were derivatized to the N-propoxycarbonyl derivatives using propylchloroformate. Pentadeuterated MA was used as an internal standard. The recoveries of AP and MA from urine were 88.2 and 92.5%, and those from blood were 89.7 and 90.3%, respectively. The calibration curves showed linearity in the range of 12.5-2000 ng/ml (ng/g) for AP and MA in urine and blood, and 0.25-20 ng/mg in hair. When urine samples containing two different concentrations (200 and 1000 ng/ml) of AP and MA, blood samples containing two different concentrations (200 and 1000 ng/g) of AP and MA, hair samples containing two different concentrations (0.5 and 5.0 ng/mg) of AP and MA, the coefficients of variation of intra-day and inter-day were 0.68-3.60% in urine, 0.42-4.58% in blood, and 1.20-13.1% in hair. Furthermore, this proposed method was applied to a medico-legal case of MA intoxication.  相似文献   

8.
A method for the determination of dihydroetorphine hydrochloride, a powerful anaesthetic and analgesic drug, in biological fluids by GC-MS with selected-ion monitoring using etorphine as internal standard was established. Dihydroetorphine was extracted from human blood and urine with dichloromethane and then derivatized with N-heptafluorobutyrylimidazole after concentration to dryness. A dihydroetorphine monoheptafluorobutyl derivative was formed which showed good behavior on GC-MS with electronic-impact ionization. The main fragment, m/z 522, which is the base peak, was selected as the ion for quantitation and the corresponding ion, m/z 520, was selected for monitoring the internal standard, etorphine. The recoveries and coefficients of variation of the whole procedure were determined with five controlled dihydroetorphine-free urine and plasma samples spiked with different concentrations of dihydroetorphine. The concentration of dihydroetorphine for quantitation was in the range 1–20 ng/ml for urine and 2.5–250 ng/ml for plasma. The correlation coefficients of the standard curves are sufficient to determine the dihydroetorphine. The accuracy for quantitation of dihydroetorphine in urine and plasma is less than 10.6%.  相似文献   

9.
A sensitive and selective GC-MS method was developed for the determination of low levels of a novel antiinflammatory agent, 1-(7-tert.-butyl-2,3-dihydro-3,3-dimethylbenzo[b]furan-5-yl)-4-cyclopropylbutan-1-one (I), in small volumes of animal plasma. The method involved the addition of 13C6-labeled-I to plasma samples, followed by a simple liquid-liquid extraction with hexane to isolate the analytes from matrix components. The levels of I in the sample extracts were determined by isotope-dilution GC-MS analysis using selected-ion monitoring. The method was linear over three orders of magnitude, with a limit of quantitation of 1.8 ng/ml I, using plasma sample volumes of 0.1 ml. The method was utilized to determine the pharmacokinetic parameters of I in rats and dogs, following intravenous administration.  相似文献   

10.
A sensitive and specific gas chromatography-mass spectrometry (GC-MS) method for the determination of amphetamine (AM), methamphetamine (MA), methylenedioxyamphetamine (MDA), methylenedioxymethamphetamine (MDMA) and methylenedioxyethylamphetamine (MDEA) in whole blood was designed, using the respective pentadeuterated analogs of the analytes as internal standards (I.S.). After alkalinisation of blood samples, the amphetamines were extracted using diethyl ether, derivatized with heptafluorobutyric anhydride, then purified by successive washings with deionized water and 4% NH4OH. Extraction recoveries were 85.2% for AM, 90.9% for MA, 76.5% for MDA, 84.1% for MDMA and 63.6% for MDEA. Chromatographic separation was performed on a non-polar 30 m×0.32 mm HP 5 MS capillary column using a temperature program. Detection was carried out in the electron-impact, selected ion-monitoring mode, using three mass-to-charge ratios for each analyte and one for each I.S. Limits of detection ranged from 0.5 to 8 ng/ml and limits of quantification were 10 ng/ml for AM, MDMA and MDEA; 20 ng/ml for MA; and 50 ng/ml for MDA. The method was linear from this limit up to 1000 ng/ml for all analytes, with good intra-assay precision and good intermediate precision and accuracy over these ranges. There was no interferences from other sympathomimetic drugs such as ephedrine, norephedrine or methoxyphenamine. This method is thus suitable for clinical and forensic toxicology, as well as for doping control.  相似文献   

11.
We devised a sensitive and simple method to simultaneously determine bromvalerylurea and allylisopropylacetylurea in human blood and urine by gas chromatography-mass spectrometry. Bromvalerylurea and allylisopropylacetylurea were extracted using an Extrelut column with an internal standard, 2-bromohexanoylurea, followed by derivatization with heptafluorobutyric anhydride. The derivatized extract was submitted to GC-MS analysis of EI-SIM mode. The calibration curves of both compounds were linear in the concentration range from 0.01 to 10 microg/ml in both blood and urine samples. The lower limits of detection of bromvalerylurea and allylisopropylacetylurea were 0.005 and 0.005 microg/ml, respectively. This method proved most useful in accurately identifying these drugs in blood and urine from an autopsied individual.  相似文献   

12.
An assay for cadmium in whole blood and urine using deuterium background-correction electrothermal atomic absorption spectroscopy (D(2)-ETAAS) was developed. Cadmium (in a 1- to 2-ml sample) was bound to 15 mg anion-exchange resin, interfering ions were removed in a 2-ml Bio-Spin column, and cadmium was extracted into 100 microl 1M nitric acid for analysis. Cadmium in the sample extract was concentrated 7-fold for blood and 10-fold for urine over the starting material. These steps produced cadmium atomic absorption traces with high signal to background ratios and allowed analysis against aqueous standards. At approximately 0.1 ng Cd/ml, mean intra- and interassay coefficients of variation were 11-12%. Cadmium recovery for 0.1 to 0.6 ng added cadmium was 107+/-4% for blood and 94+/-4% for urine (mean+/-SE, n=3). The mean detection limit (mean + 3 x SD of blank) was 0.008 ng/ml for blood and 0.003 ng/ml for urine. Samples from "unexposed" animals including humans ranged from 0.051+/-0.000 to 0.229+/-0.035 ng/ml. Values were approximately 10-fold lower than those obtained by the method of Stoeppler and Brandt using Zeeman background-correction ETAAS. This new high-sensitivity, low-volume assay will be useful for epidemiological studies, even those involving children, and will provide a means to help determine the contribution of cadmium to disease incidence in the general population.  相似文献   

13.
We have presented a simple and sensitive method for determining pethidine, a narcotic analgesic drug in body fluids by gas chromatography (GC)/surface ionization organic mass spectrometry (SIOMS). Good linearity was obtained in the range of 0.625–25 ng/ml of whole blood and urine by mass chromatography, and in the range of 0.05–2 ng/ml of whole blood by selected ion monitoring (SIM). Pethidine and diphenylpyraline (internal standard) were extracted from body fluids with Bond Elut Certify cartridges; their recoveries were above 95%. The detection limits (signal-to-noise ratio=3) were estimated to be 0.2 ng/ml of whole blood or urine by mass chromatography, 0.02 ng/ml of whole blood by SIM.  相似文献   

14.
The purpose of this study was to develop a simple and accurate analytical method to determine amino acids in urine samples. The developed method involves the employment of an extract derivatization technique together with gas chromatography-mass spectrometry (GC-MS). Urine samples (300 microl) and an internal standard (10 microl) were placed in a screw tube. Ethylchloroformate (50 microl), methanol-pyridine (500 microl, 4:1, v/v) and chloroform (1 ml) were added to the tube. The organic layer (1 microl) was injected to a GC-MS system. In this proposed method, the amino acids in urine were derivatized during an extraction, and the analytes were then injected to GC-MS without an evaporation of the organic solvent extracted. Sample preparation was only required for ca. 5 min. The 15 amino acids (alanine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, tyrosine, tryptophan, valine) quantitatively determined in this proposed method. However, threonine, serine, asparagine, glutamine, arginine were not derivatized using any tested derivatizing reagent. The calibration curves showed linearity in the range of 1.0-300 microg/ml for each amino acid in urine. The correlation coefficients of the calibration curves of the tested amino acids were from 0.966 to 0.998. The limit of detection in urine was 0.5 microg/ml except for aspartic acid. This proposed method demonstrated substantial accuracy for detection of normal levels. This proposed method was limited for the determination of 15 amino acids in urine. However, the sample preparation was simple and rapid, and this method is suitable for a routine analysis of amino acids in urine.  相似文献   

15.
A method for the determination of menthol and menthol glucuronide (M-G) after enzymatic hydrolysis in plasma and urine of rats and humans was developed using headspace solid phase microextraction and gas chromatography-mass spectrometry in the selected ion monitoring mode (HS-SPME/GC-MS). The assay linearity for plasma ranged from 5 to 1000 ng/ml. The limit of quantification (LOQ) in plasma was 5 ng/ml. The intra- and inter-day precision for menthol and M-G were < or = 18.1% R.S.D. at the LOQ and < or = 4.0% at higher concentrations. Menthol and M-G were determined in rat and human plasma and urine after administration of menthol.  相似文献   

16.
A rapid analysis of methamphetamine and its metabolites in urine was performed by gas chromatography-mass spectrometry (GC-MS) using a short narrow-bore capillary column (NBC) (5 m x 0.1 mm I.D.). For detection, selected ion monitoring (SIM) was performed for the characteristic ions of each of the compounds. The analytes were independently detected within 2 min. Linearity was demonstrated over a range from 25-2500 ng/ml. As an application of this study, a urine sample from a drug-abuse suspect was analyzed. The analytes from the actual sample were detected with reasonable reproducibility. The results indicate the possibility of rapid analysis using a conventional GC-MS with a short NBC at a relatively low inlet pressure.  相似文献   

17.
A HPLC assay method was modified and validated for the determination of 5-fluorouracil in human red blood cells, plasma and whole blood with a two-fold increased sensitivity (detection limit=10 ng/ml). The assay was linear from 25 to 1500 ng/ml and the accuracy ranged from 96.7 to 103.2% at 25 ng/ml, 94.8 to 99.4% at 500 ng/ml, and 98.9 to 99.5% at 1500 ng/ml. Intra-assay and inter-assay coefficients of variation were less than 8% over the range of concentrations and less than 8% over 10 days of analysis. After intravenous bolus and infusion of 5-fluorouracil in patients with colorectal cancer, the concentrations of 5-fluorouracil in whole blood were 108–111% of plasma concentrations, while packed red blood cells levels were 8–15% of plasma concentrations in the five patients studied. By utilising basic analytical hardware, this represents an accurate, precise, reproducible and affordable method for 5-fluorouracil pharmacokinetics investigation and therapeutic drug monitoring.  相似文献   

18.
(E)-5-(2-Bromovinyl)-2′-deoxyuridine is an antiviral drug used for treatment of infections with Herpes simplex virus type 1 as well as Varicella zoster virus. Two fast methods for the determination of the drug and its metabolite in plasma and urine by capillary electrophoresis have been developed. The plasma method can be used for measurement of total as well as unbound drug and metabolite. Plasma and urine samples are prepared for measuring by liquid/liquid extraction resulting in a limit of quantification of 40 ng/ml for total and 10 ng/ml for free BVdU in plasma and 170 ng/ml in urine. Inter- as well as intra-day precision were found to be better than 10% and both methods have been used for drug monitoring of patients.  相似文献   

19.
A gas chromatographic—mass spectrometric (GC—MS) method is presented for the analysis of azacyclonol (AZA), a metabolite of terfenadine in serum and urine specimens. Following an alkaline extraction, AZA and an internal standard were derivatized using heptafluorobutyric anhydride. Fourier transform infrared spectrometry suggested that two sites on the AZA molecule were derivatized. GC—MS of the extracts had a limit of quantitation (LOQ) of 1 ng/ml and linear range of 1–1000 ng/ml in urine. Four volunteers were administered a therapeutic regimen of terfenadine followed by urine and serum specimen collection(s) during the next seven days. The results indicated that following a 60-mg dose of terfenadine each 12 h for five days, (1) AZA appears in urine within 2 h, (2) urine AZA concentrations were above the LOQ 72 h following the last dose, (3) peak urine concentrations were as high as 19 000 ng/ml, and (4) mean serum concentration following the ninth dose was 59 ng/ml.  相似文献   

20.
A high performance liquid chromatography (HPLC) method using fluorescence detection to determine 3-amino-5-mercapto-1,2,4-triazole (AMT) levels in serum has been developed. Sample preparation involved treatment with tributylphosphine (TBP) to reduce disulfides formed during storage, precipitation of proteins with acetonitrile (ACN), and precolumn derivatization using the thiol reactive fluorescent probe monobromobimane (MBB). The conjugate (AMT-MBB) was resolved by gradient elution from a C(18) reversed-phase column. The assay method was linear over a concentration range of 0.78-50 microg/ml and had a limit of detection (LOD) of 0.05 microg/ml AMT (10 microl injection). This method provides a sensitive and specific tool for the determination of AMT in serum and may have potential industrial hygiene application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号