首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prion replication is believed to consist of two components, a growth or elongation of infectious isoform of the prion protein (PrP(Sc)) particles and their fragmentation, a process that provides new replication centers. The current study introduced an experimental approach that employs Protein Misfolding Cyclic Amplification with beads (PMCAb) and relies on a series of kinetic experiments for assessing elongation rates of PrP(Sc) particles. Four prion strains including two strains with short incubation times to disease (263K and Hyper) and two strains with very long incubation times (SSLOW and LOTSS) were tested. The elongation rate of brain-derived PrP(Sc) was found to be strain-specific. Strains with short incubation times had higher rates than strains with long incubation times. Surprisingly, the strain-specific elongation rates increased substantially for all four strains after they were subjected to six rounds of serial PMCAb. In parallel to an increase in elongation rates, the percentages of diglycosylated PrP glycoforms increased in PMCAb-derived PrP(Sc) comparing to those of brain-derived PrP(Sc). These results suggest that PMCAb selects the same molecular features regardless of strain initial characteristics and that convergent evolution of PrP(Sc) properties occurred during in vitro amplification. These results are consistent with the hypothesis that each prion strain is comprised of a variety of conformers or 'quasi-species' and that change in the prion replication environment gives selective advantage to those conformers that replicate most effectively under specific environment.  相似文献   

2.
Transmissible spongiform encephalopathies are fatal neurodegenerative disorders thought to be transmitted by self-perpetuating conformational conversion of a neuronal membrane glycoprotein (PrPC, for “cellular prion protein”) into an abnormal state (PrPSc, for “scrapie prion protein”). Doppel (Dpl) is a protein that shares significant biochemical and structural homology with PrPC. In contrast to its homologue PrPC, Dpl is unable to participate in prion disease progression or to achieve an abnormal PrPSc-like state. We have constructed a chimeric mouse protein, composed of the N-terminal domain of PrPC (residues 23-125) and the C-terminal part of Dpl (residues 58-157). This chimeric protein displays PrP-like biochemical and structural features; when incubated in presence of NaCl, the α-helical monomer forms soluble β-sheet-rich oligomers which acquire partial resistance to pepsin proteolysis in vitro, as do PrP oligomers. Moreover, the presence of aggregates akin to protofibrils is observed in soluble oligomeric species by electron microscopy.  相似文献   

3.
The "protein only" hypothesis postulates that the infectious agent of prion diseases, PrP(Sc), is composed of the prion protein (PrP) converted into an amyloid-specific conformation. However, cell-free conversion of the full-length PrP into the amyloid conformation has not been achieved. In an effort to understand the mechanism of PrP(Sc) formation, we developed a cell-free conversion system using recombinant mouse full-length PrP with an intact disulfide bond (rPrP). We demonstrate that rPrP will convert into the beta-sheet-rich oligomeric form at highly acidic pH (<5.5) and at high concentrations, while at slightly acidic or neutral pH (>5.5) it assembles into the amyloid form. As judged from electron microscopy, the amyloid form had a ribbon-like assembly composed of two non-twisted filaments. In contrast to the formation of the beta-oligomer, the conversion to the amyloid occurred at concentrations close to physiological and displayed key features of an autocatalytic process. Moreover, using a shortened rPrP consisting of 106 residues (rPrP 106, deletions: Delta23-88 and Delta141-176), we showed that the in vitro conversion mimicked a transmission barrier observed in vivo. Furthermore, the amyloid form displayed a remarkable resistance to proteinase K (PK) and produced a PK-resistant core identical with that of PrP(Sc). Fourier transform infrared spectroscopy analyses showed that the beta-sheet-rich core of the amyloid form remained intact upon PK-digestion and accounted for the extremely high thermal stability. Electron and real-time fluorescent microscopy revealed that proteolytic digestion induces either aggregation of the amyloid ribbons into large clumps or further assembly into fibrils composed of several ribbons. Fibrils composed of ribbons were very fragile and had a tendency to fragment into short pieces. Remarkably, the amyloid form treated with PK preserved high seeding activity. Our work supports the protein only hypothesis of prion propagation and demonstrates that formation of the amyloid form that recapitulates key physical properties of PrP(Sc) can be achieved in vitro in the absence of cellular factors or a PrP(Sc) template.  相似文献   

4.
Prions are unconventional infectious agents composed exclusively of misfolded prion protein (PrP(Sc)), which transmits the disease by propagating its abnormal conformation to the cellular prion protein (PrP(C)). A key characteristic of prions is their species barrier, by which prions from one species can only infect a limited number of other species. Here, we report the generation of infectious prions by interspecies transmission of PrP(Sc) misfolding by in vitro PMCA amplification. Hamster PrP(C) misfolded by mixing with mouse PrP(Sc) generated unique prions that were infectious to wild-type hamsters, and similar results were obtained in the opposite direction. Successive rounds of PMCA amplification result in adaptation of the in vitro-produced prions, in a process reminiscent of strain stabilization observed upon serial passage in vivo. Our results indicate that PMCA is a valuable tool for the investigation of cross-species transmission and suggest that species barrier and strain generation are determined by the propagation of PrP misfolding.  相似文献   

5.
Prion diseases are characterized by the replicative propagation of disease-associated forms of prion protein (PrP(Sc); PrP refers to prion protein). The propagation is believed to proceed via two steps; the initial binding of the normal form of PrP (PrP(C)) to PrP(Sc) and the subsequent conversion of PrP(C) to PrP(Sc). We have explored the two-step model in prion-infected mouse neuroblastoma (ScN2a) cells by focusing on the mouse PrP (MoPrP) segment 92-GGTHNQWNKPSKPKTN-107, which is within a region previously suggested to be part of the binding interface or shown to differ in its accessibility to anti-PrP antibodies between PrP(C) and PrP(Sc). Exchanging the MoPrP segment with the corresponding chicken PrP segment (106-GGSYHNQKPWKPPKTN-121) revealed the necessity of MoPrP residues 99 to 104 for the chimeras to achieve the PrP(Sc) state, while segment 95 to 98 was replaceable with the chicken sequence. An alanine substitution at position 100, 102, 103, or 104 of MoPrP gave rise to nonconvertible mutants that associated with MoPrP(Sc) and interfered with the conversion of endogenous MoPrP(C). The interference was not evoked by a chimera (designated MCM2) in which MoPrP segment 95 to 104 was changed to the chicken sequence, though MCM2 associated with MoPrP(Sc). Incubation of the cells with a synthetic peptide composed of MoPrP residues 93 to 107 or alanine-substituted cognates did not inhibit the conversion, whereas an anti-P8 antibody recognizing the above sequence in PrP(C) reduced the accumulation of PrP(Sc) after 10 days of incubation of the cells. These results suggest the segment 100 to 104 of MoPrP(C) plays a key role in conversion after binding to MoPrP(Sc).  相似文献   

6.
DNA aptamers were selected against recombinant human (rhu) cellular prion protein (PrP(C)) 23-231 by systematic evolution of ligands via a systematic evolution of ligands by exponential (SELEX) enrichment procedure using lateral flow chromatography. The SELEX procedure was performed with an aptamer library consisting of a randomized 40-nucleotide core flanked by 28-mer primer-binding sites that, theoretically, represented approximately 10(24) distinct nucleic acid species. Sixty nanograms of rhuPrP(C)23-231 immobilized in the center of a lateral flow device was used as the target molecule for SELEX. At the end of 6 iterations of SELEX, 13 distinct candidate aptamers were identified, of which, 3 aptamers represented 32%, 8%, and 5% of the sequences respectively. Eight aptamers, including the three most frequently occurring candidates, were selected for further evaluation. Selected aptamers bound to rhuPrP(C)23-231 at 10(-6) M to 10(-8) M concentrations. Two of the eight aptamers bound at higher concentrations to rhuPrP(C)90-231. Theoretical thermodynamic modeling of selected aptamer sequences identified several common motifs among the selected aptamers that could play a role in PrP binding. Binding affinity to rhuPrP(C)23-231 was both aptamer sequence and structure dependent. Further, selected aptamers bound to mammalian PrPs derived from brain of healthy sheep, calf, piglet, and deer, and to PrP(C) expressed in mouse neuroblastoma cells. None of the aptamers bound to proteinase K-digested scrapie-infected mouse neuroblastoma cells or untreated PrP-null cells, which further confirmed the PrP(C) specificity of the aptamers. In summary, we enriched and selected DNA aptamers that bind specifically to rhuPrP(C) and mammalian PrP(C) with varying affinities and can be applied to biological samples for PrP(C) enrichment and as diagnostic tools in double ligand assay systems.  相似文献   

7.
Transmission studies in transmissible spongiform encephalopathies (TSEs) have become increasingly important due to the possible transmission of bovine spongiform encephalopathy to humans resulting in new variant Creutzfeldt-Jacob disease. The horizontal transmission of scrapie, a TSE of sheep, is poorly understood. Possible sources of horizontal transmission are the submandibular and parotid salivary glands. TSEs like natural sheep scrapie are characterized by the conversion of a normal protease sensitive prion protein, PrP(c), to an abnormal protease resistant prion protein, PrP(Sc). Since the presence of PrP(Sc) is an indicator of disease, the salivary glands of scrapie-infected sheep were examined for the presence of PrP(Sc). Although PrP(c) mRNA was detected in the salivary glands, PrP(Sc) was not found in the salivary glands of scrapie-infected sheep. These data suggest that the salivary glands are unlikely sources of horizontal transmission of natural sheep scrapie.  相似文献   

8.
Prion diseases are fatal and transmissible neurodegenerative disorders characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrP(C)) denoted PrP(Sc). To identify intracellular organelles involved in PrP(Sc) formation, we studied the role of the Ras-related GTP-binding proteins Rab4 and Rab6a in intracellular trafficking of the prion protein and production of PrP(Sc). When a dominant-negative Rab4 mutant or a constitutively active GTP-bound Rab6a protein was overexpressed in prion-infected neuroblastoma N2a cells, there was a marked increase of PrP(Sc) formation. By immunofluorescence and cell fractionation studies, we have shown that expression of Rab6a-GTP delocalizes PrP within intracellular compartments, leading to an accumulation in the endoplasmic reticulum. These results suggest that prion protein can be subjected to retrograde transport toward the endoplasmic reticulum and that this compartment may play a significant role in PrP(Sc) conversion.  相似文献   

9.
Rapid western blot (WB) procedure for an abnormal isoform of prion protein (PrP(Sc) ) detection in lymphoid tissues was established and has been applied to the surveillance of fallen stock. In this program, brain and palatal tonsil were examined by WB and three cases of sheep scrapie were detected. While one clinically scrapie-infected sheep harbored PrP(Sc) in the brain and palatal tonsil, the two sheep in the pre-clinical stage harbored PrP(Sc) in the brain, but not in the palatal tonsil. This study shows that PrP(Sc) accumulation in palatal tonsil is variable in natural scrapie, even among genetically susceptible sheep.  相似文献   

10.
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.  相似文献   

11.
In order to investigate the potential of voles to reproduce in vitro the efficiency of prion replication previously observed in vivo, we seeded protein misfolding cyclic amplification (PMCA) reactions with either rodent-adapted Transmissible Spongiform Encephalopathy (TSE) strains or natural TSE isolates. Vole brain homogenates were shown to be a powerful substrate for both homologous or heterologous PMCA, sustaining the efficient amplification of prions from all the prion sources tested. However, after a few serial automated PMCA (saPMCA) rounds, we also observed the appearance of PK-resistant PrP(Sc) in samples containing exclusively unseeded substrate (negative controls), suggesting the possible spontaneous generation of infectious prions during PMCA reactions. As we could not definitively rule out cross-contamination through a posteriori biochemical and biological analyses of de novo generated prions, we decided to replicate the experiments in a different laboratory. Under rigorous prion-free conditions, we did not observe de novo appearance of PrP(Sc) in unseeded samples of M109M and I109I vole substrates, even after many consecutive rounds of saPMCA and working in different PMCA settings. Furthermore, when positive and negative samples were processed together, the appearance of spurious PrP(Sc) in unseeded negative controls suggested that the most likely explanation for the appearance of de novo PrP(Sc) was the occurrence of cross-contamination during saPMCA. Careful analysis of the PMCA process allowed us to identify critical points which are potentially responsible for contamination events. Appropriate technical improvements made it possible to overcome PMCA pitfalls, allowing PrP(Sc) to be reliably amplified up to extremely low dilutions of infected brain homogenate without any false positive results even after many consecutive rounds. Our findings underline the potential drawback of ultrasensitive in vitro prion replication and warn on cautious interpretation when assessing the spontaneous appearance of prions in vitro.  相似文献   

12.
A specific monoclonal antibody (mAb) V5B2 that discriminates between brain tissue of Creutzfeldt-Jakob disease patients and that from normal controls without proteinase K digestion has been prepared using a 13-residue synthetic peptide P1 from the primary structure of human PrP. In the light of the specific interaction between mAb V5B2 and the pathological isoform of PrP (PrP(Sc)), we investigated the solution behavior of antigen P1 and its interactions with mAb V5B2. Our results show that V5B2 recognizes epitope P1 in dimeric/oligomeric forms in solution and in the fibril-like aggregates, as well as in PrP(Sc) aggregates, and demonstrate that the specific epitope is present in all of these forms, but not in PrP(C).  相似文献   

13.
We used two chemical modifiers, tetranitromethane (TNM) and acetic anhydride (Ac(2)O), which specifically target accessible tyrosine and lysine residues, respectively, to modify recombinant Syrian hamster PrP(90-231) [rSHaPrP(90-231)] and SHaPrP 27-30, the proteinase K-resistant core of PrP(Sc) isolated from brain of scrapie-infected Syrian hamsters. Our aim was to find locations of conformational change. Modified proteins were subjected to in-gel proteolytic digestion with trypsin or chymotrypsin and subsequent analysis by mass spectrometry (MALDI-TOF). Several differences in chemical reactivity were observed. With TNM, the most conspicuous reactivity difference seen involves peptide E(221)-R(229) (containing Y(225) and Y(226)), which in rSHaPrP(90-231) was much more extensively modified than in SHaPrP 27-30; peptide H(111)-R(136), containing Y(128), was also more modified in rSHaPrP(90-231). Conversely, peptides Y(149)-R(151), Y(157)-R(164), and R(151)-Y(162) suffered more extensive modification in SHaPrP 27-30. Acetic anhydride modified very extensively peptide G(90)-K(106), containing K(101), K(104), K(106), and the amino terminus, in both rSHaPrP(90-231) and SHaPrP 27-30. These results suggest that (1) SHaPrP 27-30 exhibits important conformational differences in the C-terminal region with respect to rSHaPrP(90-231), resulting in the loss of solvent accessibility of Y(225) and Y(226), very solvent-exposed in the latter conformation; because other results suggest preservation of the two C-terminal helices, this might mean that these are tightly packed in SHaPrP 27-30. (2) On the other hand, tyrosines contained in the stretch spanning approximately Y(149)-R(164) are more accessible in SHaPrP 27-30, suggesting rearrangements in α-helix H1 and the short β-sheet of rSHaPrP(90-231). (3) The amino-terminal region of SHaPrP 27-30 is very accessible. These data should help in the validation and construction of structural models of PrP(Sc).  相似文献   

14.
Pharmacological control of the angiogenic process (i.e., the neovascularization necessary for the growth and progression of tumors and metastases) is considered to be one of the most promising approaches to antineoplastic therapy. Endostatin, a 20-kDa protein derived from collagen XVIII, is one of the first recently discovered endogeneous antiangiogenic substances, but its cell targets and mechanism(s) of action are still unknown. We thought it would be interesting to test whether shorter peptides derived from endostatin might preserve its antiangiogenic activity. Four synthetic peptides corresponding to the sequences 6-49 (I), 50-92 (II), 93-133 (III), and 134-178 (IV) of human endostatin were tested for their ability to inhibit endothelial cell proliferation, migration, and both in vitro and in vivo angiogenesis. Fragment I (and fragment IV in the tests performed) was found to be fully biologically active in all of the angiogenesis assays, and sometimes showed even greater potency and efficacy than full-length human endostatin itself.  相似文献   

15.
Conversion of cellular prion protein (PrP(C)) into a pathological conformer (PrP(Sc)) is thought to be promoted by PrP(Sc) in a poorly understood process. Here, we report that in wild-type mice, the expression of PrP(C) rendered soluble and dimeric by fusion to immunoglobulin Fcgamma (PrP-Fc(2)) delays PrP(Sc) accumulation, agent replication, and onset of disease following inoculation with infective prions. In infected PrP-expressing brains, PrP-Fc(2) relocates to lipid rafts and associates with PrP(Sc) without acquiring protease resistance, indicating that PrP-Fc(2) resists conversion. Accordingly, mice expressing PrP-Fc(2) but lacking endogenous PrP(C) are resistant to scrapie, do not accumulate PrP-Fc(2)(Sc), and do not transmit disease to others. These results indicate that various PrP isoforms engage in a complex in vivo, whose distortion by PrP-Fc(2) affects prion propagation and scrapie pathogenesis. The unique properties of PrP-Fc(2) suggest that soluble PrP derivatives may represent a new class of prion replication antagonists.  相似文献   

16.
The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc.To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs) derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p(0/0) cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids.  相似文献   

17.
A PrP(Sc)-degrading enzyme was isolated from the culture medium of Streptomyces sp. using perchloric acid-soluble protein (PSP) as a substrate. The media of 500 microbial species were screened to obtain the PSP-degrading enzyme. The medium containing the protease secreted from strain 99-GP-2D-5 showed the highest PSP-degrading activity. Strain 99-GP-2D-5 was assigned as the genus Streptomyces by its morphological and chemotaxonomic characteristics. When scrapie prion was used as the substrate, it was completely digested by the enzyme. The amino acid sequence of the enzyme was identical to that of the C-terminal region of alkaline serine protease (ASP) I. ASP I may be the precursor of the enzyme, and the enzyme seems to be the mature type of ASP I. The maximal activity of the enzyme was observed at 60 degrees C and pH 11, and the scrapie prion was degraded within 3 min under the optimum conditions.  相似文献   

18.
The conversion of the normal cellular prion protein, PrP(C), into the protease-resistant, scrapie PrP(Sc) aggregate is the cause of prion diseases. We developed a novel enzyme-linked immunosorbent assay (ELISA) that is specific for PrP aggregate by screening 30 anti-PrP monoclonal antibodies (MAbs) for their ability to react with recombinant mouse, ovine, bovine, or human PrP dimers. One MAb that reacts with all four recombinant PrP dimers also reacts with PrP(Sc) aggregates in ME7-, 139A-, or 22L-infected mouse brains. The PrP(Sc) aggregate is proteinase K resistant, has a mass of 2,000 kDa or more, and is present at a time when no protease-resistant PrP is detectable. This simple and sensitive assay provides the basis for the development of a diagnostic test for prion diseases in other species. Finally, the principle of the aggregate-specific ELISA we have developed may be applicable to other diseases caused by abnormal protein aggregation, such as Alzheimer's disease or Parkinson's disease.  相似文献   

19.
PrP(Sc) is believed to serve as a template for the conversion of PrP(C) to the abnormal isoform. This process requires contact between the two proteins and implies that there may be critical contact sites that are important for conversion. We hypothesized that antibodies binding to either PrP(c)or PrP(Sc) would hinder or prevent the formation of the PrP(C)-PrP(Sc) complex and thus slow down or prevent the conversion process. Two systems were used to analyze the effect of different antibodies on PrP(Sc) formation: (i) neuroblastoma cells persistently infected with the 22L mouse-adapted scrapie stain, and (ii) protein misfolding cyclic amplification (PMCA), which uses PrP(Sc) as a template or seed, and a series of incubations and sonications, to convert PrP(C) to PrP(Sc). The two systems yielded similar results, in most cases, and demonstrate that PrP-specific monoclonal antibodies (Mabs) vary in their ability to inhibit the PrP(C)-PrP(Sc) conversion process. Based on the numerous and varied Mabs analyzed, the inhibitory effect does not appear to be epitope specific, related to PrP(C) conformation, or to cell membrane localization, but is influenced by the targeted PrP region (amino vs carboxy).  相似文献   

20.
A prion protein (PrP)-like protein, Doppel (Dpl) is a homologue of cellular PrP (PrPC). Immunoblotting revealed heterogeneous glycosylation patterns of Dpl and PrPC in several cell lines and tissues, including brain and testis. To investigate whether the glycosylation and modification of Dpl and PrPC could influence each other, PrP gene (Prnp)-deficient neuronal cells, transfected with Prnp and/or the Dpl gene (Prnd), were analyzed by deglycosylation with peptide N-glycosidase F. The modification of Dpl was not influenced by PrPC, whereas an N-terminally truncated fragment of PrPC was reduced by Dpl expression. These results indicated that Dpl was glycosylated in a cell type- and tissue-specific manner regardless of PrPC, while PrPC endoproteolysis was modulated by Dpl expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号