首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strain of Rhizopus stolonifer produced a high activity of extracellular DNAase when grown on YPG (yeast extract peptone glucose) medium. The source of peptone had a marked effect on the enzyme yield and only one peptone (i.e. from Sarabhai M. Chemicals Ltd, India) supported enzyme production. Maximum enzyme activity (88 U/ml) was obtained after 4 days' growth under submerged conditions in YPG medium containing 100 M Mn2+, Co2+ or Mg2+, and glucose as the sole carbon source. The unpurified enzyme was optimally active at pH 7.5 and 45°C. It had a higher activity with sonicated and heat-denatured DNA than native DNA.  相似文献   

2.
Hu CK  Bai FW  An LJ 《Biotechnology letters》2003,25(14):1191-1194
Mg2+ at 3.5 mM increased the tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae to ethanol. After 9 h of exposure to 20% (v/v) ethanol at 30 °C, all cells died whereas over 50% remained viable for the cells grown with Mg2+. The effect of Mg2+ is closely related to its ability to decrease plasma membrane permeability of cells subjected to ethanol stress.  相似文献   

3.
Ethanol-induced changes of CO2 production were compared in three strains ofSaccharomyces cerevisiœ. CaCl2 and MgCl2 exerted protective effects against the action of ethanol. Optimal concentrations ensuring maximum of CO2 production at 10% (V/V) of ethanol under non-growing conditions were 3 mmol/L Ca2+ and 2 mmol/L Mg2+. Yeast growth with and without ethanol addition was stimulated by Mg2+ more than by Ca2+ during fermentation, whereas ethanol production was more efificient when both Ca2+ and Mg2+ were added.  相似文献   

4.
Loss of substrate, pyruvate, a limitation for enzymatic batch production of (R)-phenylacetylcarbinol (PAC), resulted from two phenomena: temperature dependent non-enzymatic concentration decrease due to the cofactor Mg2+ and formation of by-products, acetaldehyde and acetoin, by pyruvate decarboxylase (PDC). In the absence of enzyme, pyruvate stabilization was achieved by lowering the Mg2+ concentration from 20 to 0.5 mM. With 0.5 mM Mg2+ Rhizopus javanicus and Candida utilis PDC produced similar levels of PAC (49 and 51 g l–1, respectively) in 21 h at 6 °C; however C. utilis PDC formed less by-product from pyruvate and was more stable during biotransformation. The process enhancements regarding Mg2+ concentration and source of PDC resulted in an increase of molar yield (PAC/consumed pyruvate) from 59% (R. javanicus PDC, 20 mM Mg2+) to 74% (R. javanicus PDC, 0.5 mM Mg2+) to 89% (C. utilis PDC, 0.5 mM Mg2+).  相似文献   

5.
A thermophilic strain of Streptomyces thermonitrificans produced a high activity of intracellular glucose isomerase (12 U/ml) when grown in a medium containing 1% (w/v) xylose, supplemented with 2% (w/v) sorbitol as the second carbon source, at 50°C for 16 h. Addition of Mg2+ enhanced enzyme production but the organism could grow and produce the enzyme in the absence of Co2+.The authors are with the Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, IndiaNCL Communication No. 5813  相似文献   

6.
A thermostable, salt-tolerant amylase was produced byBacillus sp. 64, with maximum amylase production (8.0 U/ml culture filtrate) after 24-h growth. Partially purified amylase was stable at 60°C for 30 min and 80% of the original activity was retained when incubated in 5m NaCl over 24 h. Starch or dextrin was the best carbon source and peptone the best nitrogen source for the production of the enzyme. Amylase was secreted over a wide pH range (5 to 11) with the maximum activity between pH 7 and 8. Ca2+ and Mg2+ stimulated growth and enzyme production.NCL Communication No. 5209.  相似文献   

7.
Liu B  Li Z  Hong Y  Ni J  Sheng D  Shen Y 《Biotechnology letters》2006,28(20):1655-1660
An exo-β-d-glucosaminidase gene (PH0511) was cloned from the hyperthermophilic archaeon, Pyrococcus horikoshii, and expressed in Escherichia coli. The purified protein showed a strong exo-β-d-glucosaminidase activity by TLC analysis. DTT (50 mM) had little effect on its homodimeric structure during SDS-PAGE. The enzyme was optimally active at 90°C (over 20 min) and pH 6. It had a half-life of 9 h at 90°C and is the most thermostable glucosaminidase described up to now. The activity was not inhibited by ethanol, 2-propanol, DMSO, PEG-400, denaturing agents SDS (5%, w/v), urea, guanidine hydrochloride (5 M) and Mg2+, Mn2+, Co2+, Ca2+, Sr2+, Ni2+ (at up to 10 mM).  相似文献   

8.
Different concentrations of sucrose (3–25% w/v) and peptone (2–5% w/v) were studied in the formulation of media during the cultivation of Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611. Moreover, cane molasses (3.5–17.5% w/v total sugar) and yeast powder (1.5–5% w/v) were used as alternative nutrients for both strains’ cultivation. These media were formulated for analysis of cellular growth, β-Fructosyltransferase and Fructooligosaccharides (FOS) production. Transfructosylating activity (U t ) and FOS production were analyzed by HPLC. The highest enzyme production by both the strains was 3% (w/v) sucrose and 3% (w/v) peptone, or 3.5% (w/v) total sugars present in cane molasses and 1.5% (w/v) yeast powder. Cane molasses and yeast powder were as good as sucrose and peptone in the enzyme and FOS (around 60% w/w) production by studied strains.  相似文献   

9.
When cells of Saccharomyces cerevisiae were grown aerobically under glucose-repressed conditions, ethanol production displayed a hyperbolic relationship over a limited range of magnesium concentrations up to around 0.5 mM. A similar relationship existed between available Mg2+ and ethanol yield, but over a narrower range of Mg2+ concentrations. Cellular demand for Mg2+ during fermentation was reflected in the accumulation patterns of Mg2+ by yeast cells from the growth medium. Entry of cells into the stationary growth phase and the time of maximum ethanol and minimum sugar concentration correlated with a period of maximum Mg2+ transport by yeast cells. The timing of Mg2+ transport fluxes by S. cerevisiae is potentially useful when conditioning yeast seed inocula prior to alcohol fermentations. Received 04 March 1996/ Accepted in revised form 21 August 1996  相似文献   

10.
Fish scale, the chief waste material of fish processing industries was processed and tested for production of extracellular protease by mutant Aspergillus niger AB100. Protease production by A. niger AB100 was greatly enhanced in presence of processed fish scale powder. Where as among the three complex nutrients tested, soya bean meal shows maximum stimulatory effect over protease production (2,776 μmol/ml/min) when used in combination with glucose (5% w/v) and urea (2.5% w/v). The protease was optimally active at pH 7.0, retaining more than 60% of its activity in the pH range of 5–9. The enzyme was found to be most active at 50°C and stable at 30°C for 1 h. Purification of enzyme by CM-Cellulose and SDS-PAGE resulted in about 26-fold increase in the specific activity of the enzyme with a molecular weight of 30.9 kDa. HPLC study shows the purity of the enzyme as 75.92%. By the activating effect of divalent cations (Fe2+, Zn2+, Mn2+, Ca2+and Mg2+) and inhibiting effect of chelating agent (EDTA) and Hg2+, the enzyme was found to be a metalloprotease.  相似文献   

11.
Vacuoles isolated from storage roots of red beet (Beta vulgaris L.) posess a Mg2+-dependent, alkaline pyrophosphatase (PPase) activity which is further stimulated by salts of monovalent cations. The requirement for Mg2+ is specific. Mn2+ and Zn2+ permitted only 20% and 12%, respectively, of the PPase activity obtained in the presence of Mg2+ while Ca2+, Co2+ and Cu2+ were ineffective. Stimulation of Mg2+-PPase activity by salts of certain monovalent cations was due to the cation and the order of effectiveness of the cations tested was K+=Rb+=NH 4 + >Cs+. Salts of Li+ and Na+ inhibited Mg2+-PPase activity by 44% and 24%, respectively. KCl-stimulation of Mg2+-PPase activity was maximal with 60–100 mM KCl. There was a sigmoidal relationship between PPase activity and Mg2+ concentrations which resulted in markedly non-linear Lineweaver-Burk plots. At pH 8.0, the optimal [Mg2+]:[PPi] ratio for both Mg2+-PPase and (Mg2++KCl)-PPase activities was approximately 1:1, which probably indicates MgP2O7 2- is the true substrate.Abbreviations BSA bovine serum albumen - EDTA ethylenediamine tetra-acetic acid, disodium salt - MES 2-(N-morpholino)ethanesulphonic acid - Mg T 2+ total magnesium - Pi inorganic phosphate - PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)methylamine  相似文献   

12.
Thylakoids and Photosystem II particles prepared from the cyanobacterium Synechococcus PCC 7942 washed with a HEPES/glycerol buffer exhibited low rates of light-induced oxygen evolution. Addition of either Ca2+ or Mg2+ to both thylakoids and Photosystem II particles increased oxygen evolution independently, maximal rates being obtained by addition of both ions. If either preparation was washed with NaCl, light induced O2 evolution was completely inhibited, but re-activated in the same manner by Ca2+ and Mg2+ but to a lower level. In the presence of Mg2+, the reactivation of O2 evolution by Ca2+ allowed sigmoid kinetics, implying co-operative binding. The results are interpreted as indicating that not only Ca2+, but also Mg2+, is essential for light-induced oxygen evolution in thylakoids and Photosystem II particles from Synechococcus PC 7942. The significance of the reactivation kinetics is discussed. Reactivation by Ca2+ was inhibited by antibodies to mammalian calmodulin, indicating that the binding site in Photosystem II may be analogous to that of this protein.Abbreviation HEPES n-2-Hydroxyethylpiperazine--2-ethane sulphonic acid  相似文献   

13.
Partially (6-fold) purified plasma membrane ATPase from an ethanol-sensitive yeast, Kloeckera apiculata, had an optimum pH of 6.0, an optimum temperature of 35°C, a K m of 3.6 mm ATP and a V max of 11 mol Pi/min.mg protein. SDS-PAGE of the semi-purified plasma membrane showed a major band of 106 kDa. No in vivo activation of the ATPase by glucose was observed. Although 4% (v/v) ethanol decreased the growth rate by 50% it did not affect the ATPase. Concentrations of ethanol 2% (v/v) did, however, inhibit the enzyme in vitro. The characteristics of the enzyme did not change during growth in the presence of ethanol.  相似文献   

14.
Gramicidin S (GS) inhibition of germination outgrowth ofBacillus brevis spores was reversed completely by a short pretreatment with sodium dodecyl sulfate, moderately by ethanol or by incubation at pH 10 but not by incubation at pH 4. Of five metal ions tested (Na+, Mg2+, Fe2+, Cu2+, Ca2+), only Ca2+ reversed GS inhibition. When Ca2+ (but not the other four metal ions) was added to the growth medium, there was a considerable portion of the biosynthesized GS found in the extracellular fluid. These findings are interpreted in terms of the binding of GS to the external layers of theB. brevis spore.  相似文献   

15.
Ion stimulation and some other properties of an ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.) have been determined. The ATPase had a specific requirement for Mg2+ and in the presence of Mg2+ it was stimulated by salts of monovalent cations. The degree of stimulation by monovalent salts was influenced mainly by the anion and the order of effectiveness of the anions tested was Cl->HCO 3 - >Br->malate>acetate>SO 4 2- . For any given series of anions the magnitude of the stimulation obtained was influenced by the accompanying cation (NH 4 + Na+>K+). This cation effect was abolished by 0.01% (v/v) Triton X-100 and it is suggested that it is the result of different permeabilities of membrane vesicles to the cations. There was no evidence of synergistic stimulation of the ATPase by mixtures of Na+ and K+. KCl- and NaCl-stimulation was maximal with salt concentrations in the range 60–150 mM. The true substrate of the enzyme was shown to be MgATP. It was shown that KCl stimulation was the result of an increase in Vmax rather than a change in the affinity of the enzyme for MgATP. The ATPase was inhibited by N,N-dicyclohexylcarbodiimide, diethylstilbestrol, mersalyl and KNO3 but other inhibitors tested (azide, oligomycin, orthovanadate, K3[Cr(oxalate)6] and ethyl-3-[3-dimethylaminopropyl]carbodiimide) were without effect or caused only partial inhibition at the highest concentration tested. The ATPase activity was equally distributed between pellet and supernatant fractions obtained after the subfractionation of vacuoles but the properties of the ATPase in each fraction were the same. It is suggested that beet vacuoles possess only one ATPase. The properties of the ATPase are compared with those of ATPases associated with other plant membranes and organelles and its possible role in transport at the tonoplast is discussed.Abbreviations ATPF free ATP - ATPT total ATP - BSA bovine serum albumen - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DNP 2,4-dinitrophenol - EDAC ethyl-3-(3-dimethylaminopropyl)carbodiimide - Km apparent Michaelis constant - MgATP complex of Mg2+ and ATP - Mg F 2+ free Mg2+ - Mg T 2 total Mg2+ - MES 2-(N-Morpholino)ethanesulphonic acid - Na2EDTA disodium ethylenediaminetetraacetic acid - NEM N-ethylmaleimide - Pi inorganic phosphate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)methylamine - Vmax maximum velocity  相似文献   

16.
The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40°C for 72 h and 96 h, respectively. Addition of glucose or fructose (≥1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)2HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS–PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60°C and 4.0–4.5, respectively. Both invertases were stable for 1 h at 60°C with half-lives of 10 min at 70°C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters Km and Vmax for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot−1, respectively.  相似文献   

17.
Among several lipase-producing actinomycete strains screened, Amycolatopsis mediterranei DSM 43304 was found to produce a thermostable, extracellular lipase. Culture conditions and nutrient source modification studies involving carbon sources, nitrogen sources, incubation temperature and medium pH were carried out. Lipase activity of 1.37 ± 0.103 IU/ml of culture medium was obtained in 96 h at 28°C and pH 7.5 using linseed oil and fructose as carbon sources and a combination of phytone peptone and yeast extract (5:1) as nitrogen sources. Under optimal culture conditions, the lipase activity was enhanced 12-fold with a twofold increase in lipase specific activity. The lipase showed maximum activity at 60°C and pH 8.0. The enzyme was stable between pH 5.0 and 9.0 and temperatures up to 60°C. Lipase activity was significantly enhanced by Fe3+ and strongly inhibited by Hg2+. Li+, Mg2+ and PMSF significantly reduced lipase activity, whereas other metal ions and effectors had no significant effect at 0.01 M concentration. A. mediterranei DSM 43304 lipase exhibited remarkable stability in the presence of a wide range of organic solvents at 25% (v/v) concentration for 24 h. These features render this novel lipase attractive for potential biotechnological applications in organic synthesis reactions.  相似文献   

18.
Two separate 4 (bacterial concentrations)×6 (yeast concentrations) full factorial experiments were conducted in an attempt to identify a novel approach to minimize the effects caused by bacterial contamination during industrial production of ethanol from corn. Lactobacillus plantarum and Lactobacillus paracasei, commonly occurring bacterial contaminants in ethanol plants, were used in separate fermentation experiments conducted in duplicate using an industrial strain of Saccharomyces cerevisiae, Allyeast Superstart. Bacterial concentrations were 0, 1×106, 1×107 and 1×108 cells/ml mash. Yeast concentrations were 0, 1×106, 1×107, 2×107, 3×107, and 4×107 cells/ml mash. An increased yeast inoculation rate of 3×107 cells/ml resulted in a greater than 80% decrease (P<0.001) and a greater than 55% decrease (P<0.001) in lactic acid production by L. plantarum and L. paracasei, respectively, when mash was infected with 1×108 lactobacilli/ml. No differences (P>0.25) were observed in the final ethanol concentration produced by yeast at any of the inoculation rates studied, in the absence of lactobacilli. However, when the mash was infected with 1×107 or 1×108 lactobacilli/ml, a reduction of 0.7–0.9% v/v (P<0.005) and a reduction of 0.4–0.6% v/v (P<0.005) in the final ethanol produced was observed in mashes inoculated with 1×106 and 1×107 yeast cells/ml, respectively. At higher yeast inoculation rates of 3×107 or 4×107 cells/ml, no differences (P>0.35) were observed in the final ethanol produced even when the mash was infected with 1×108 lactobacilli/ml. The increase in ethanol corresponded to the reduction in lactic acid production by lactobacilli. This suggests that using an inoculation rate of 3×107 yeast cells/ml reduces the growth and metabolism of contaminating lactic bacteria significantly, which results in reduced lactic acid production and a concomitant increase in ethanol production by yeast.  相似文献   

19.
Werner M. Kaiser  Steve Huber 《Planta》1994,193(3):358-364
Nitrate reductase in spinach (Spinacia oleracea L.) leaves was rapidly inactivated in the dark and reactivated by light, whereas in pea (Pisum sativum L.), roots, hyperoxic conditions caused inactivation, and anoxia caused reactivation. Reactivation in vivo, both in leaves and roots, was prohibited by high concentrations (10–30 M) of the serine/threonine-protein phosphatase inhibitors okadaic acid or calyculin, consistent with the notion that protein dephosphorylation catalyzed by type-1 or type-2A phosphatases was the mechanism for the reactivation of NADH-nitrate reductase (NR). Following inactivation of leaf NR in vivo, spontaneous reactivation in vitro (in desalted extracts) was slow, but was drastically accelerated by removal of Mg2+ with excess ethylenediaminetetraacetic acid (EDTA), or by desalting in a buffer devoid of Mg2+. Subsequent addition of either Mg2+, Mn2+ or Ca2+ inhibited the activation of NR in vitro. Reactivation of NR (at pH 7.5) in vitro in the presence of Mg2+ was also accelerated by millimolar concentrations of AMP or other nucleoside monophosphates. The EDTA-mediated reactivation in desalted crude extracts was completely prevented by protein-phosphatase inhibitors whereas the AMP-mediated reaction was largely unaffected by these toxins. The Mg2+-response profile of the AMP-accelerated reactivation suggested that okadaic acid, calyculin and microcystin-LR were rather ineffective inhibitors in the presence of divalent cations. However, with partially purified enzyme preparations (5–15% polyethyleneglycol fraction) the AMPmediated reactivation was also inhibited (65–80%) by microcystin-LR. Thus, the dephosphorylation (activation) of NR in vitro is inhibited by divalent cations, and protein phosphatases of the PP1 or PP2A type are involved in both the EDTA and AMP-stimulated reactions. Evidence was also obtained that divalent cations may regulate NR-protein phosphatase activity in vivo. When spinach leaf slices were incubated in Mg2+ -and Ca2+-free buffer solutions in the dark, extracted NR was inactive. After addition of the Ca2+ /Mg2+-ionophore A 23187 plus EDTA to the leaf slices, NR was activated in the dark. It was again inactivated upon addition of divalent cations (Mg2+ or Ca2+). It is tentatively suggested that Mg2+ fulfills several roles in the regulatory system of NR: it is required for active NR-protein kinase, it inactivates the protein phosphatase and is, at the same time, necessary to keep phospho-NR in the inactive state. The EDTA- and AMP-mediated reactivation of NR in vitro had different pH optima, suggesting that two different protein phosphatases may be involved. At pH 6.5, the activation of NR was relatively slow and the addition or removal of Mg2+ had no effect. However, 5-AMP was a potent activator of the reaction with an apparent K m of 0.5 mM. There was also considerable specificity for 5AMP relative to 3- or 2-AMP or other nucleoside monophoposphates. We conclude that, depending upon conditions, the signals triggering NR modulation in vivo could be either metabolic (e.g. 5-AMP) or physical (e.g. cytosolic [Mg2+]) in nature.Abbreviations DTT dithiothreitol - Mops 3-(N-morpholino)propanesulfonic acid - NR NADH-nitrate reductase - NRA nitrate-reductase activity - PP protein phosphatase This paper is dedicated to Prof. O.K. Volk on the occasion of his 90th birthdayThe skilled technical assistance of Elke Brendle-Behnisch is gratefully acknowledged. The investigations were cooperatively supported by the Deutsche Forschungsgemeinschaft (SFB 251), the U.S. Department of Agriculture, Agricultural Research Services, Raleigh, NC. This work was also supported in part by a grant from the U.S. Department of Energy (Grant DE-A I05-91 ER 20031 to S.C.H.).  相似文献   

20.
The production of biosurfactants was evaluated for seven bacterial strains isolated from different oil contaminated sites by the Emulsification Index using diesel oil as the hydrocarbon source. Minimum Inhibitory Concentrations of Mg2+, Cr3+ and Cu2+ were determined to identify the less sensitive bacteria in order to select the best strains for bioremediation. Plasmid extraction was also performed in order to search for gene sequences involved with biosurfactant synthesis. All strains were able to emulsify diesel oil. Rhodococcus ruber AC239 presented the best index (58%), followed by other Rhodococcus strains. Pseudomonas aeruginosa, R. ruber AC239, AC87 and R. erytropolis AC272 presented smallest sensitivities to heavy metals used, being suitable for use in sites contaminated with high concentrations of them. No plasmid DNA was detected showing that biosurfactant coding genes should be in the chromosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号