首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
放牧家畜排泄物N转化研究进展   总被引:6,自引:2,他引:6  
放牧家畜排泄物氮转化是草原生态系统氮循环的关键。自 2 0世纪 70年代以来 ,以提高氮利用效率和减少温室气体排放为目的的家畜排泄物氮转化的研究越来越受到人们的重视。放牧家畜排泄物氮的转化研究主要包括 3个方面 :氮的矿化、硝化与反硝化 ,氮的氨化。家畜粪氮矿化速度慢 ,持续时间长 ;尿氮矿化速度快 ,持续时间短。氮矿化与家畜排泄物 C∶ N比、木质素/氮素比、木质素含量和纤维素含量呈负相关关系 ,而与全氮含量和水溶性氮含量呈正相关 ;土壤动物和微生物可以显著促进氮的矿化过程 ;高温和相对干燥、砂质土壤较壤土和粘土有利于氮的矿化。 4~ 4 0℃氮硝化作用与温度呈正相关 ;硝化作用的底物和产物浓度、土壤溶液渗透压和氯化物浓度的增加对硝化作用有强烈的抑制效应 ;p H6 .0~ 8.0条件下硝化作用强度随着土壤p H值的升高而增加 ,而 p H值高于 8.0或低于 6 .0时硝化作用受到抑制 ;硝化作用与土壤氧气含量呈正相关关系 ,而与土壤含水量呈负相关 ;温暖湿润较干燥炎热的气候条件有利于硝化过程的进行。反硝化作用与土壤氧气浓度呈负相关关系 ,而与土壤含水量和可利用有机碳含量呈正相关 ;0~ 6 5℃反硝化作用强度随温度升高而增大 ,10~ 35℃条件下温度成为影响反硝化作用的关键因素 ;反硝化作用在  相似文献   

2.
Nitrogen transformations in a small mountain stream   总被引:5,自引:2,他引:3  
Ammonium, urea, and nitrate were added to Bear Brook, a second and third order stream in the Hubbard Brook Experimental Forest, New Hampshire. Removal of ammonium and urea during downstream transport coincided with the release of nitrate. Nitrate removal did not occur when it was added alone or with dissolved organic carbon. Laboratory experiments showed that coarse particulate organic material (detritus) and bryophytes taken from the streambed were active in the removal of ammonium from enriched stream water, and in the release of nitrate upon the addition of ammonium.The patterns of removal and release observed in these experiments suggest a biologically mediated, oxidation process. Budgetary calculations show that the in-stream transformation of nitrogen inputs during summer and autumn could represent 12 to 25 percent of the nitrogen exported as nitrate during winter and spring from heterotrophic streams like Bear Brook. This type of internal cycling affects the timing and form of nitrogen export from small streams draining forested watersheds in the northeastern United States.  相似文献   

3.
Sahrawat  K. L. 《Plant and Soil》1980,57(1):143-146
Summary Mineralization of soil nitrogen studies with two acid sulfate soils under anaerobic and aerobic incubation at 30°C for 2 weeks showed that the mineral N was released and accumulated entirely as NH 4 + in both soils. Nitrification did not occur in either of the soils under conditions that stimulate nitrification. The acid sulfate soils studied release good amounts of mineralizable N, and, because of lack of nitrifying activity, denitrification may not be a serious problem in these soils.  相似文献   

4.
The effect of soil burning on N and P availability and on mineralization and nitrification rates of N in the burned mineral soil was studied by combustion of soils in the laboratory. At a fire temperature of 600°C, there was a complete volatilization of NH4 and a significant increase of pH, from 7.6 in the unburned soil to 11.7 in the burned soil. Under such conditions ammonification and nitrification reactions were inhibited. Less available P was produced immediately after the fire at 600°C, as compared to P amount produced at 250°C. Burning the soils with plants caused a decrease in NH4-N and (NO2+NO3)-N concentrations in the soil as well as a reduction in ammonification and nitrification rates. Combustion of soil with plants contributed additional available P to the burned soil. The existence of a non-burned soil under the burned one played an important role in triggering ammonification and nitrification reactions.  相似文献   

5.
选择中亚热带毛竹人工林为研究对象,利用野外原位和室内培养相结合的方法,探讨不同间伐强度(25%间伐、50%间伐)和林下植被剔除对土壤氮矿化速率及其温度敏感性的影响。结果表明,25%间伐显著增加土壤氨化速率(P0.01),但降低硝化速率(P0.01);50%间伐显著增加土壤硝化速率(P0.01),而林下植被剔除显著降低土壤硝化速率(P0.01)。相关分析的结果表明,土壤氨化速率与有机碳(SOC)、全氮(TN)及全磷(TP)含量呈显著负相关关系;硝化速率与SOC、含水量(SWC)呈显著正相关关系,与铵态氮(NH~+_4-N)含量呈显著负相关关系。随着温度的升高,不同处理下的氨化速率均显著增加(P0.01),而硝化速率显著降低(P0.01)。25%间伐显著降低土壤净氮矿化和氨化过程的Q_(10)值,对硝化过程的Q_(10)值影响不显著;50%间伐对氨化和硝化过程的Q_(10)值影响均不显著;林下植被剔除对氨化过程的Q_(10)值影响不显著,但显著增加硝化过程的Q_(10)值。不同处理下的土壤氮矿化过程的Q_(10)值介于1.17—1.36之间。25%间伐和林下植被保留有利于毛竹林土壤氮素的供给。  相似文献   

6.
Net N mineralization rates were measured in heathlands still dominated by ericaceous dwarf shrubs (Calluna vulgaris or Erica tetralix) and in heathlands that have become dominated by grasses (Molinia caerulea or Deschampsia flexuosa). Net N mineralization was measuredin situ by sequential soil incubations during the year. In the wet area (gravimetric soil moisture content 74–130%), the net N mineralization rates were 4.4 g N m–2 yr–1 in the Erica soil and 7.8 g N m–2 yr–1 in the Molinia soil. The net nitrification rate was negligibly slow in either soil. In the dry area (gravimetric soil moisture content 7–38%), net N mineralization rates were 6.2 g N M-2 yr–1 in the Calluna soil, 10.9 g N m–2 yr–1 in the Molinia soil and 12.6 g N m–2 yr–1 in the Deschampsia soil. The Calluna soil was consistently drier throughout the year, which may partly explain its slower mineralization rate. Net nitrification was 0.3 g N m–2 yr–1 in the Calluna soil, 3.6 g N m–2 yr–1 in the Molinia soil and 5.4 g N m–2 yr–1 in the Deschampsia soil. The net nitrification rate increased proportionally with the net N mineralization rate suggesting ammonium availability may control nitrification rates in these soils. In the dry area, the faster net N mineralization rates in sites dominated by grasses than in the site dominated by Calluna may be explained by the greater amounts of organic N in the soil of sites dominated by grasses. In both areas, however, the net amount of N mineralized per gram total soil N was greater in sites dominated by Molinia or Deschampsia than in sites dominated by Calluna or Erica. This suggests that in heathlands invaded by grasses the quality of the soil organic matter may be increased resulting in more rapid rates of soil N cycling.  相似文献   

7.
A kinetic study was carried out in a saline medium to assess the effect of O2 on the two-step nitrification process: for the first nitritation step, 2–26 mg dissolved O2 (DO) l–1 was used and for the second nitratation step, 0.5–24 mg DO l–1 was used. Nitritation rate was measured in the presence of sodium azide so as to inhibit nitratation. Ammonia-oxidizing (AOB) and nitrite-oxidizing (NOB) bacterial in the mixed culture were determined by 16 S rRNA hybridization. The affinity constants for oxygen O2 of the AOB and the NOB were 1.66 mg O2 l–1 and 3 mg O2 l–1 respectively. The larger than the previously reported values of these constants might be due to the high salt content in the medium. High O2 concentrations did inhibit the nitrification rate.  相似文献   

8.
Nitrogen transformations in the soil, and the resulting changes in carbon and nitrogen compounds in soil percolate water, were studied in two stands of Norway spruce (Picea abies L.). Over the last 30 years the stands were repeatedly limed (total 6000 kg ha–1), fertilized with nitrogen (total about 900 kg ha–1), or both treatments together. Both aerobic incubations of soil samples in the laboratory, and intact soil core incubations in the field showed that in control plots ammonification widely predominated over nitrification. In both experiments nitrogen addition increased the formation of mineral-N. In one experiment separate lime and nitrogen treatments increased nitrification, in the other, only lime and nitrogen addition together had this effect. In one experiment immobilization of nitrogen to soil microbial biomass was lower in soil only treated with nitrogen. Soil percolate water was collected by means of lysimeters placed under the humus layer and 10 cm below in the mineral soil. Total N, NH4-N and NO3-N were measured, and dissolved organic nitrogen was fractioned according to molecular weight. NO3-N concentrations in percolate water, collected under the humus layer, were higher in plots treated with N-fertilizer, especially when lime was also added. The treatments had no effect on the N concentrations in mineral soil. A considerable proportion of nitrogen was leached in organic form.  相似文献   

9.
Sediment cores containing different densities of Chironomus plumosus, ranging from 0 to 12 000 ind. m–2, were incubated in the laboratory, with 100 and 39% O2 saturation in the overlying water. Rates of O2 uptake, and fluxes of the various inorganic N species were measured after addition of 15NO inf3 su– to the overlying water. The animals enhanced O2 and NO inf3 su– uptake, due to irrigation. Denitrification of NO inf3 su– coming from the overlying water (Dw) and dissimilatory NO inf3 su– reduction to NH inf4 sup+ (DNRA) represented 20–30 and 4–10% of the NO inf3 su– uptake, respectively. Only 20–40% of the measured NH inf4 sup+ effluxes corresponded to DNRA, the rest was probably due to animal excretion. Nitrite production, mostly from dissimilatory NO inf3 sup– reduction, was detected at both 39 and 100% oxygen saturation. Higher rates of NO inf2 su– production at the lower oxygen concentrations, were probably due to a thinner oxic layer, compared to fully oxygenated waters. The presence of Chironomus plumosus increased nitrification rates, relative to non-inhabited microcosms. However, nitrification rates were low compared to Dw, probably due to low numbers of nitrifiers in the sediment. At 39% oxygen saturation, rates of nitrification and denitrification of NO inf3 su– generated within the sediment were not measurable.  相似文献   

10.
H+ production due to N uptake in a mature Scots pine stand subjected to high NH4 + deposition was previously estimated to amount to approx. 2.2 kmol ha-1 y-1. The question whether H+ transfers related to N mineralization (ammonification and nitrification) offset or corroborate this proton production is investigated in the present research. To determine N mineralization, soil cores were used of which both ends were closed with layers of ion exchange resin (IER) to prevent influx and efflux of ions. The effect of liming on N mineralization and the resulting H+ production was investigated in 7 incubation periods of each ca. 8 wk. Because of its high mobility NO3 accumulated in both IER layers at the expense of that in the incubated forest floor and mineral soil. Net N mineralization in the soil cores as a whole amounted to 40 and 77 kg N ha-1 in 384 d in the control and limed plots, respectively. In both treatments ca. 65% of mineralized N was nitrified. H+ production due to N mineralization amounted to approx. 1.2 kmol ha-1 y-1 in the control and limed plots. Liming reduced the amount of C in the forest floor, but not forest floor mass, because of an increased mixing with mineral particles.  相似文献   

11.
Quantification of net nitrogen mineralization (NNM) in soils is indispensable in order to optimize N fertilization of crops. Two long-term laboratory incubation methods were applied to determine rates of net nitrogen mineralization (rNNM) of soils from two sites of arable land (sandy loam soil, silty loam soil) at four temperature levels (2°C, 8°C, 14°C, 21°C). Since variability within replicates was small, the modified 12-week incubation method of Stanford and Smith (1972) using disturbed soils allowed to establish reliable Arrhenius functions with reasonable expenditure. The fit of the functions derived from the 5-month incubation of 23 undisturbed soil columns (4420 cm3) was worse. This was caused by greater variability and less differentiation between temperature levels. Results of both experiments could be described best by zero-order kinetics. Mean mineralization rates of disturbed samples were approximately twice as high than those of undisturbed samples. The suitability of both methods for the prediction of NNM at site conditions is discussed. Actual respiration (AR) at incubation temperatures and substrate induced respiration (SIR) were measured at the end of the incubation of undisturbed soil columns. The results presented reveal that soil microbial communities develop in a different manner during long-term incubation at different temperatures. This behavior offends the underlying assumption that soil microbes remain in steady-state during incubation and that rising rates are physiological reactions to temperature enhancement. Therefore soil microbial biomass (SMB) dynamics during the experiment has to be accounted for when rates of NNM and Arrhenius functions are established. R Merck Section editor  相似文献   

12.
Persson  T.  Wirén  A. 《Plant and Soil》1995,173(1):55-65
Yield decline of cereals grown in monoculture may be alleviated with alternative crop management strategies. Crop rotation and optimized tillage and fertilizer management can contribute to more sustainable food and fiber production in the long-term by increasing diversity, maintaining soil organic matter (SOM), and reducing adverse effects of excessive N application on water quality. We investigated the effects of crop sequence, tillage, and N fertilization on long-term grain production on an alluvial, silty clay loam soil in southcentral Texas. Crop sequences consisted of monoculture sorghum (Sorghum bicolor (L.) Moench,) wheat (Triticum aestivum L.), and soybean (Glycine max (L.) Merr), wheat/soybean double-crop, and rotation of sorghum with wheat/soybean. Grain yields tended to be lower with no tillage (NT) than with conventional tillage (CT) early in the study and became more similar after 11 years. Nitrogen fertilizer required to produce 95% to maximum sorghum yield was similar for monoculture and rotation upon initiation of the experiment and averaged 16 and 11 mg N g-1 grain with NT and CT, respectively. After 11 years, however, the N fertilizer requirement became similar for both tillage regimes, but was greater in monoculture (17 mg N g-1 grain) than in rotation (12 mg N g-1 grain). Crop sequences with double-cropping resulted in greater land use efficiency because similar or lower amounts of N fertilizer were required to produce equivalent grain than with less intensive monoculture systems. These more intensive crop sequences produced more stover with higher N quality primarily due to the inclusion of soybean in the rotation. Large quantities of stover that remained on the soil surface with NT led to greater SOM content, which increased the internal cycling of nutrients in this soil. In southcentral Texas, where rainfall averages nearly 1000 mm yr-1, more intensive cropping of sorghum, wheat, and soybean with moderate N fertilization using reduced tillage can increase grain production and potentially decrease N losses to the environment by cycling more N into the crop-SOM system.  相似文献   

13.
Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for reclamation of open‐pit oil sands mining disturbed land in northern Alberta, Canada; coarse woody debris (CWD) is another source of organic matter for land reclamation. We investigated net nitrogen (N) transformation rates in FMM and PMM cover soils near and away from CWD 4–6 years after oil sands reclamation. Monthly net nitrification and N mineralization rates varied over time; however, mean rates across the incubation periods and microbial biomass were greater (p < 0.05) in FMM than in PMM. Net N mineralization rates were positively related to soil temperature (p < 0.001) and microbial biomass carbon (p = 0.045). Net N transformation rates and inorganic N concentrations were not affected by CWD; however, the greater 15N isotope ratio of ammonium near CWD than away from CWD indicates that CWD application increased both gross N mineralization/nitrification (causing N isotope fractionation) and gross N immobilization (no isotopic fractionation). Microbial biomass was greater near CWD than away from CWD, indicating the greater potential for N immobilization near CWD. We conclude that (1) CWD application affected soil microbial properties and would create spatial variability and diverse microsites and (2) cover soil type and CWD application had differential effects on net N transformation rates. Applying FMM with CWD for oil sands reclamation is recommended to increase N availability and microsites.  相似文献   

14.
Phosphorus availability in soils is controlled by both the sizes of P pools and the transformation rates among these pools. Rates of gross P mineralization and immobilization are poorly known due to the limitations of available analytical techniques. We developed a new method to estimate P transformation rates in three forest soils and one grassland soil representing an Alfisol, an Ultisol, and Andisol, and a Mollisol. Three treatments were applied to each soil in order to separate the processes of mineral P solubilization, organic P mineralization, and solution P immobilization. One set of soils was retained as control, a second set was irradiated with -rays to stop microbial immobilization, and a third was irradiated and then autoclaved, also stop phosphatase activity. All three sets of samples were then incubated with anion exchange resin bags under aerobic conditions. Differences in resin P among the three treatments were used to estimate gross P mineralization and immobilization rates. Autoclaving did not affect resin-extractable P in any of the soils. Radiation did not alter resin-extractable P in the forest soils but increased resin-extractable P in the grassland soil. This increase was corrected in the calculation of potential P transformation rates. Effects of radiation on phosphatase activity varied with soils but was within 30% of the original values. Rates of P gross mineralization and immobilization ranged from 0.6–3.8 and 0–4.3 mg kg-soil-1 d-1, respectively, for the four soils. The net rates of solubilization of mineral P in the grassland soil were 7–10 times higher than the rates in forest soils. Mineralization of organic P contributed from 20–60% of total available P in the acid forest soils compared with 6% in the grassland soil, suggesting that the P mineralization processes are more important in controlling P availability in these forest ecosystems. This new method does not require an assumption of equilibrium among P pools, and is safer and simpler in operation than isotopic techniques.  相似文献   

15.
Nitrification in coniferous forest soils   总被引:21,自引:0,他引:21  
K. Killham 《Plant and Soil》1990,128(1):31-44
Net nitrification rates tend to be low or negligible in the forest floor of many coniferous forests of North-East Scotland. The most likely process controls are substrate availability, pH, allelopathy, water potential, nutrient status and temperature. These are discussed in relation to field and laboratory studies of net and potential rates of nitrification.Fungi make up by far the largest part of the nitrifier community in the coniferous forest floor. Very little is known about the distribution and activity of autotrophs in these systems, although it is certain that in vitro evidence suggesting autotrophs cannot nitrify at pH levels characteristic of coniferous forest soils is unrealistic.Because of the metabolic diversity of nitrifying fungi, a variety of organic and inorganic nitrification pathways may exist in coniferous forests. The possible involvement of free radicles in fungal nitrification in coniferous forest soils is also suggested.A complete understanding of nitrification in coniferous forest soils can only result from field characterisation of N flux such as through the use of 15N. This must be combined with ecophysiological characterisation of the organisms involved in order that the complexity of nitrification in coniferous forest soils can be resolved.  相似文献   

16.
The N mineralization capacity of 41 temperate humid-zone soils of NW Spain was measured by aerobic incubation for 15 days at 28°C and 75% of field capacity. The main soil factors affecting organic N dynamics were identified by principal components analysis. Ammonification predominated over nitrification in almost all soils. The mean net N mineralization rate was 1.63% of the organic N content, and varied according to soil parent materials as follows: soils on basic and ultrabasic rocks < soils over acid metamorphic rocks < soils developed over sediments < soils over acid igneous rocks < soils on limestone. The N mineralization capacity was lower in natural soils than in cropped soils or pastures. The accumulation of organic matter (C and N) seems to be due to poor mineralization which was caused, in decreasing order of importance, by high exchangeable H-ion levels, high Al and Fe gel contents and, to a lesser extent (though more markedly in cropped soils), by silty clay texture and exchangeable Al ions.  相似文献   

17.
From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha?1 yr?1 above background displayed consistently elevated NO fluxes (100–200 µg N m?2 h?1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high‐N plots and 8.3% of inputs to the Pine low‐N plot. Nitrous oxide fluxes in the N‐treated plots were generally < 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg?1) of nitrite () were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.  相似文献   

18.
Nitrogen loss from grassland on peat soils through nitrous oxide production   总被引:2,自引:0,他引:2  
Koops  J.G.  van Beusichem  M.L.  Oenema  O. 《Plant and Soil》1997,188(1):119-130
Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in relation to N input and to determine the relative contribution of nitrification and denitrification to N2O production. Measurements were carried out on a weekly basis in 2 grasslands on peat soil (Peat I and Peat II) for 2 years (1993 and 1994) using intact soil core incubations. In additional experiments distinction between N2O from nitrification and denitrification was made by use of the gaseous nitrification inhibitor methyl fluoride (CH3F).Nitrous oxide production over the 2 year period was on average 34 kg N ha-1 yr-1 for mown treatments that received no N fertiliser and 44 kg N ha-1 yr-1 for mown and N fertilised treatments. Grazing by dairy cattle on Peat I caused additional N2O production to reach 81 kg N ha-1 yr-1. The sub soil (20–40 cm) contributed 25 to 40% of the total N2O production in the 0–40 cm layer. The N2O production:denitrification ratio was on average about 1 in the top soil and 2 in the sub soil indicating that N2O production through nitrification was important. Experiments showed that when ratios were larger than l, nitrification was the major source of N2O. In conclusion, N2O production is a significant N loss mechanism in grassland on peat soil with nitrification as an important N2O producing process.  相似文献   

19.
Summary At temperatures of 20°, 30°, 40°, 50° and 60°C in a Gangetic alluvial soil (G soil, pH 7.6) N-mineralization and nitrification increased with temperature up to 40°C and mineralized N accumulated entirely as nitrate. At 50° and 60°C mineralized N was relatively low and no nitrification occurred. In the Red soil (R soil, pH 5.2) mineralized N increased with temperature up to 40°C, was somewhat less at 50°C and was at a maximum at 60°C. Nitrification was maximum at 30°C but did not occur at 50° and 60°C. In the G soil C-mineralization increased considerably with temperature, whilst in the R soil there were only small differences due to temperature.  相似文献   

20.
采用15N库稀释-原位培养法研究了硝化抑制剂DCD、DMPP对华北盐碱性褐土氮总矿化速率和硝化速率的影响.试验在山西省运城市种植玉米的盐碱性土壤上进行,设单施尿素、尿素+DCD、尿素+DMPP 3个处理.结果表明:施肥后2周,DCD、DMPP分别使氮总矿化速率和氮总硝化速率减少了25.5%、7.3%和60.3%、59.1%,DCD对氮总矿化速率的影响显著高于DMPP,两者对氮总硝化速率的影响无显著差异;而在施肥后7周,不同硝化抑制剂对氮总硝化速率的影响存在差异.施肥后2周,3个处理的土壤氮总矿化速率和硝化速率分别是施肥前的7.2 ~10.0倍和5.5 ~21.5倍;NH4+和NO3-消耗速率分别是施肥前的9.1 ~12.2倍和5.1 ~8.4倍,这是由氮肥对土壤的激发效应所致.硝化抑制剂使氮肥更多地以NH4+形式保持在土壤中,减少了NO3-的积累.土壤氮总矿化速率和总硝化速率受硝化抑制剂的抑制是N2O减排的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号