首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S A Sholl  R C Wolf 《Steroids》1974,23(2):269-289
A competitive protein binding assay for 20α- and 20β-dihydroprogesterone is described which involves an initial chemical or enzymatic oxidation of these two isomers to progesterone. The assay can distinguish between 20α- and 20β-dihydroprogesterone and is sensitive to pg amounts of these two steroids. Venous steroid concentrations were measured in the pregnant rhesus monkey employing this assay. In this species the corpus luteum (CL) at days 22 and 157 of gestation is the primary ovarian source of 20α-dihydroprogesterone as indicated by a higher plasma concentration of this steroid in the ovarian vein draining the ovary containing the CL (+CL) than in the contralateral vein (?CL) (9.34 ng/ml versus 1.72 ng/ml, day 22; 7.52 ng/ml versus 1.96 ng/ml, day 157). By contrast the CL at day 50 appeared to secrete no 20α-dihydroprogesterone as evidenced by the essentially equal steroid levels in both ovarian veins. The CL synthesizes 20β-dihydroprogesterone only during early gestation (21–22 days) when the concentration of this steroid was 6.46 ng/ml and 0.87 ng/ml in the ovarian (+CL) and ovarian (?CL) veins, respectively. Synthesis of both 20α- and 20β-dihydroprogesterone occurs in the fetoplacental unit throughout pregnancy. This is indicated by higher steroid concentrations in the uterine vein than in the femoral vein. The results suggest both a qualitative and quantitative alteration in the luteal synthesis of 20α- and 20β-dihydroprogesterone with the advancement of gestation. The data also provide additional evidence that the steroidogenic activity of the CL is enhanced before parturition.  相似文献   

2.
This study investigates the interaction between the effect of epinephrine intracerebroventricular (icv) injection and LH on the progesterone concentration in ovarian vein blood (Po) in vivo, and also, on the release of ovarian progesterone and androstenedione in vitro, in rats on dioestrus day 2. When 2 mg ovine LH were injected in vein (i.v.), Po increased reaching 120+/-12.2 and 151+/-17.5 ng ml(-1) at 22 and 25 min, respectively. Another group of rats was injected intracerebroventricular with 5 microgram epinephrine at time zero, and with 2 mg ovine LH i.v. 3 min later. This time Po decreased during the first 3 min, then increased, reaching 64+/-7.1 ng ml(-1) at 25 min, lower than the Po obtained 22 min after LH i.v. injection only (P<0.01). Moreover, rats were injected i.v. with 2 mg ovine LH at time zero, and 7 min later with epinephrine intracerebroventricular. Po increased during the first 7 min, decreased until the 13th minute and reached 70+/-8.9 ng ml(-1) at 25 min, lower than the Po obtained 25 min after LH i.v. injection only (P<0.01). In other experience, rats with one (either right or left) superior ovarian nerve transected (SON-t), were injected intracerebroventricular with epinephrine. Five minutes later, the ovaries were removed and incubated in vitro with LH. Both ovaries (right or left) in which the SON was intact at time of epinephrine i. c.v. injection, showed a reduction of progesterone and androstenedione released in vitro (P<0.05). These results suggest that, on dioestrus day 2, the central adrenergic stimulus competes with LH in the release of ovarian progesterone. Also, the neural input that arrives at the ovary through the SON would antagonize the ovarian progesterone and androstenedione response to LH.  相似文献   

3.
To determine whether progesterone facilitates PGF(2)alpha-induced luteolysis prior to day 5 of the estrous cycle, 48 Holstein-Friestian heifers were assigned at random to four treatments: 1) 4 ml corn oil/day + 5 ml Tris-HCl buffer (control); 2) 25 mg prostaglandin F(2)alpha (PGF(2)alpha); 3) 100 mg progesterone/day (progesterone); 4) 100 mg progesterone/day + 25 mg PGF(2)alpha (combined treatment). Progesterone was injected subcutaneously daily from estrus (day 0) through day 3. The PGF(2)alpha was injected intramuscularly on day 3. Estrous cycle lengths were decreased by progesterone: 20.2 +/- 0.56, 19.2 +/- 0.31 (control and PGF(2)alpha); 13.2 +/- 1.40, and 11.7 +/- 1.27 (progesterone and combined). The combination of progesterone and PGF(2)alpha did not shorten the cycle any more than did progesterone alone (interaction, P>0.05). PGF(2)alpha treatment reduced progesterone concentrations on day 6 (P<0.05) and both progesterone and PGF(2)alpha reduced plasma progesterone on day 8 (P<0.01 and P<0.05, respectively). LH was measured in blood samples collected at 10- min intervals for 4 hr on day 4 from three heifers selected at random from each of the four treatment groups. Mean LH concentration for control heifers ranged from 0.35 to 0.63 ng/ml (overall mean, 0.49 ng/ml) and for progesterone-treated heifers ranged from 0.12 to 0.30 ng/ml (overall mean, 0.23 ng/ml). LH concentrations were greater in control heifers (P<0.01). The mean LH pulse rate for control heifers was 2.7 pulses/heifers/4 hr, while that for the progesterone-treated heifers was 1.7 pulses/heifer/4 hr. The mean pulse amplitude for control and progesterone treatments was 0.47 ng/ml and 0.36 ng/ml, respectively. Neither pulse amplitude nor frequency were different between treatment groups.  相似文献   

4.
Induction of some oestrous phenomena was achieved. Treatment with 25 mg PGF-2 alpha cuased mucous discharge, within 48-72 h after injection, which lasted for 4-5 days. Rectal palpation indicated rapid regression of the CL, and in 9 treatments of 6 buffaloes serum progesterone levels declined from 1.76 +/- 0.01 (s.d.) ng/ml before treatment to less than 0.25 ng/ml within 24 h after injection. Concentrations increased at about Day 11 and reached a peak of 1.78 +/- 0.62 ng/ml on Day 18.50 +/- 2.45.  相似文献   

5.
The role of steroids in the ovulatory process of the rat was explored in an in vitro perfusion system. Immature rat ovaries were primed with pregnant mare's serum gonadotropin (20 IU) and perfused in a recirculating perfusion system for up to 20 h. Unstimulated ovaries did not ovulate whereas the addition of luteinizing hormone (LH; 0.1 micrograms/ml) plus 3-isobutyl-1-methylxanthine (IBMX; 0.2 mM) resulted in 13.6 +/- 1.0 ovulations per treated ovary. Addition of an inhibitor of 3 beta-hydroxysteroid dehydrogenase (Compound A; 10 micrograms/ml) significantly (p less than 0.01) decreased the number of ovulations after LH plus IBMX stimulation (1.6 +/- 0.8 ovulations per treated ovary). This inhibition was reversed by the addition of progesterone, with 6.6 +/- 2.1 ovulations at approximately 100 ng/ml progesterone in the perfusion medium and 15.2 +/- 3.4 ovulations at approximately 3000 ng/ml progesterone. The addition of testosterone (10 micrograms/ml) did not reverse the inhibition of ovulations by Compound A. High levels of progesterone in the perfusion medium (greater than 3000 ng/ml) did not significantly (p greater than 0.05) increase the number of ovulations after stimulation with LH plus IBMX (20.2 +/- 4.8 ovulations), and progesterone (greater than 3000 ng/ml) was not by itself able to induce ovulations. Addition of LH plus IBMX resulted in a marked increase in the levels of progesterone, testosterone, and estradiol in the perfusion medium. The production of these steroids was almost completely inhibited by the addition of Compound A, and the levels of testosterone and estradiol were restored by the addition of high concentrations of progesterone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Concentrations of progesterone in uterine and arterial tissue and in uterine and jugular venous plasma were determined. Blood was collected on Days 4 and 9 postestrus from the jugular vein and the first and last venous branches draining each uterine cornu; uterine tissue and arteries were subsequently collected. Progesterone was greater (p less than 0.05) in the cranial third than in the middle or caudal thirds of the uterine horn adjacent to the corpus luteum (CL)-bearing ovary or in any third of the contralateral horn. Progesterone in uterine arterial segments adjacent to the CL-bearing ovary was higher (p less than 0.05) than in contralateral segments. Progesterone was higher (p less than 0.05) in blood from the first venous branch of the cranial third of the uterine cornu adjacent to the ovary with the CL, than in the last branch of the caudal third, or contralateral horn, or in jugular blood. When oviductal veins were resected on Day 9 postestrus, progesterone in the first vein draining the cranial third of the uterine cornu adjacent to the CL-containing ovary was not different (p greater than 0.05) 48 h after resection than in the same vessel in the opposite horn or in jugular blood. We concluded that progesterone and other ovarian products may be delivered to the uterus locally.  相似文献   

7.
Purified pig relaxin (3000 U/mg) was injected i.m. into pregnant Holstein dairy heifers on Day 276 or 277 to determine its effect on parturition and sequential measurements of the pelvic area, cervical dilatation, and peripheral blood-plasma concentrations of progesterone and relaxin. Treatments included phosphate-buffer saline (2 ml, Group C, N = 7), relaxin once (1 mg, Group 1R, N = 7), and twice (2 mg, 12 h apart; Group 2R, N = 7). Intervals (mean +/- s.e.) between the first injection of relaxin or PBS and calving were 64 +/- 17, 80 +/- 19 and 125 +/- 34 h for Groups 2R, 1R and C, respectively. The calving intervals were reduced in Groups 2R (P less than 0.01) and 1R (P less than 0.05) compared with Group C. The incidence of dystocia was 29% (2 of 7) in Group 2R and 43% (3 of 7) in Group 1R compared with 57% (4 of 7) in Group C (P less than 0.01). Body weights and ratios of males to females of the calves were similar (P greater than 0.05) between groups. Progesterone plasma concentrations decreased (P less than 0.01) earlier in Groups 1R and 2R compared with Group C, and this acute decrease began within 6 h of treatment. At 24 h after relaxin or PBS injection, progesterone concentrations were 2.7 +/- 1.1 ng/ml for Group 2R, 3.5 +/- 0.9 ng/ml for Group 1R, and 6.0 +/- 0.1 ng/ml for Group C. Relaxin reached peak blood-plasma levels of 19 +/- 2.2 ng/ml 1 h after injection of relaxin, but remained unchanged, 0.3 +/- 0.01 ng/ml, in Group C. Pelvic area was increased 26%, 22% and 14% and cervical dilatation was increased 109%, 76% and 53% 48 h after injection in Groups 2R, 1R and C, respectively, but these responses were similar among groups at the time of parturition. We conclude that two i.m. injections of relaxin facilitated earlier calving, acutely decreased progesterone secretion, increased cervical dilatation and pelvic area expansion, and decreased the incidence of dystocia in dairy heifers.  相似文献   

8.
Stimulation of the primate corpus luteum (CL) by endogenous chorionic gonadotropin (CG) in early pregnancy, or by exogenous human (h)CG in simulated early pregnancy, results in a transient elevation of serum progesterone (P) and a persistent elevation of serum 17 beta-estradiol (E). Luteal prostaglandins (PG) may play a role in these responses. The objective of the current study was to correlate luteal PG production and steroidogenic response of CL in vitro with patterns of serum steroids during simulated early pregnancy. CL were removed from rhesus monkeys (n = 26) at 0 h, 9 h, 3 days, 6 days, and 10 days, during prolonged CG exposure of simulated early pregnancy. Dispersed cells were incubated in vitro at 37 degrees C for 8 h. Changes in basal production of P were not significantly correlated with patterns of serum steroids. Maximal stimulation of P production by hCG in vitro (stimulated minus basal) continuously declined (p less than 0.01) from 0 h (means +/- SE, 59.6 +/- 17.9 ng/ml) to 10 days (4.7 +/- 1.8 ng/ml) of simulated early pregnancy. In contrast to patterns of response to hCG, the level of enhancement in P production in response to a maximally stimulatory dose of dibutyryl (db) cyclic adenosine 3',5'-monophosphate (cAMP) declined (p less than 0.05) from 0 h (52.4 +/- 17.6 ng/ml) to 3 days (20.3 +/- 8.4 ng/ml), but was maintained through 10 days (23.7 +/- 11.6 ng/ml) of simulated early pregnancy. As such, desensitization to gonadotropin, which occurred in terms of P production, appears to involve an event subsequent to stimulation of adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The influence of corticosteroids and progesterone upon porcine testicular testosterone production was investigated by administration of exogenous adrenocorticotropic hormone (ACTH), cortisol and progesterone, and by applying a specific stressor. Synthetic ACTH (10 micrograms/kg BW) increased (P less than 0.01) peripheral concentrations of testosterone to peak levels of 5.58 +/- 0.74 ng/ml by 90 min but had no effect upon levels of luteinizing hormone (LH). Concentrations of corticosteroids and progesterone also increased (P less than 0.01) to peak levels of 162.26 +/- 25.61 and 8.49 +/- 1.00 ng/ml by 135 and 90 min, respectively. Exogenous cortisol (1.5 mg X three doses every 5 min) had no effect upon circulating levels of either testosterone or LH, although peripheral concentrations of corticosteroids were elevated (P less than 0.01) to peak levels of 263.57 +/- 35.03 ng/ml by 10 min after first injection. Exogenous progesterone (50 micrograms X three doses every 5 min) had no effect upon circulating levels of either testosterone or LH, although concentrations of progesterone were elevated (P less than 0.01) to peak levels of 17.17 +/- 1.5 ng/ml by 15 min after first injection. Application of an acute stressor for 5 min increased (P less than 0.05) concentrations of corticosteroids and progesterone to peak levels of 121.32 +/- 12.63 and 1.87 +/- 0.29 ng/ml by 10 and 15 min, respectively. However, concentrations of testosterone were not significantly affected (P greater than 0.10). These results indicate that the increase in testicular testosterone production which occurs in boars following ACTH administration is not mediated by either cortisol or progesterone.  相似文献   

10.
The effects of abdominal vagotomy (AVGT) on ovarian function were studied in cyclic hamsters. AVGT significantly decreased the number of ova shed (AVGT: 10.5 +/- 1.5 ova/hamster, sham: 15.8 +/- 0.7 ova/hamster; P less than 0.05) and serum progesterone levels (AVGT: 2.1 +/- 0.3 ng/ml, sham: 3.9 +/- 0.7 ng/ml; P less than 0.05) on the morning of estrus. However, progesterone concentrations in the corpora lutea and non-luteal ovary on estrus in the AVGT and sham groups were similar. The serum estradiol levels in both groups on proestrus increased from 0900 h (AVGT: 75 +/- 10 pg/ml, sham: 72 +/- 6 pg/ml) to 1500 h (AVGT: 204 +/- 27 pg/ml, sham: 196 +/- 35 pg/ml) but there was no significant difference between the two groups. Partial degranulation of ovarian mast cells was not increased in the AVGT group. Also, vasoactive intestinal peptide (VIP) content in the ovary was not increased by AVGT at 0900 h on proestrus (AVGT: 60.1 +/- 16.8 pg/ovary, sham: 37.2 +/- 14.3 pg/ovary). These results indicated that AVGT interferes with normal ovulation and results in an increase in the number of atretic follicles, but that these effects by AVGT seemed not to be mediated through ovarian mast cells and VIP.  相似文献   

11.
In polyovular species, it is unclear whether the characteristics of each individual corpus luteum (CL), such as mass, progesterone concentration and receptors for luteinizing hormone (LH), are representative of those of its cohorts during the ovarian cycle. The current study was performed 1) to characterize the conditions for estimation of binding parameters for LH receptors in porcine CL, and 2) to compare LH binding sites, luteal progesterone concentrations and luteal masses among CL of ovaries within individual pigs. Gonadotropin binding sites in porcine CL were characterized via specific binding of 125I-human (h) LH to 20,000 X g particulate fractions of luteal tissue. Specific binding was directly proportional to tissue content and was detectable at the lowest content tested (0.5 mg tissue equivalents/tube). Specific uptake of 0.25 ng LH by 5.0 mg tissue equivalents was time- and temperature-dependent; steady-state binding was achieved within 20 h at 37 and 25 degrees C. Binding of LH after 20 h incubation at 37 degrees C (4718 +/- 192 cpm, means +/- SEM) and 25 degrees C (4112 +/- 340 cpm) was greater than that at 4 degrees C (1930 +/- 5 cpm, P less than 0.01). Luteal particulates from individual CL of ovaries collected from four mature nonpregnant pigs (13-23 CL/pig) were incubated with eight concentrations of 125I-hLH. Steady-state binding depended upon hormone concentration until reaching saturation at 2.5 ng 125I-hLH/tube. Scatchard analyses yielded linear plots. Binding capacities for LH ranged among pigs from 0.71 +/- 0.03 to 3.69 +/- 0.13 fmol/mg CL equivalents and receptor affinities (Kd) ranged from 0.92 +/- 0.05 to 4.89 +/- 0.41 X 10(-11) M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of the so-called Short-Term Protocol (5-day progesterone treatment+PGF(2)alpha) on ovarian activity and LH surge was studied in goats. The goats received 250IU eCG at the time of device withdrawal (eCG group; n=7), or 200microg of EB (estradiol benzoate) 24h after device withdrawal (EB group; n=8), or received neither eCG nor EB (control group; n=8). The Short-Term Protocol induced greater (4.1+/-1.1ng/ml) progesterone serum concentrations at 24h after start of the treatment, that declined to 0.2+/-0.1ng/ml at 12h after device withdrawal. In all of the groups, the maximum concentration of estradiol-17beta was reached at about 36h after device withdrawal. Maximum concentration was greater in the EB group (76.9+/-24.6pmol/l) than in the control group (41.8+/-9.0pmol/l; P<0.01), with the eCG group showing intermediate concentration (70.3+/-32.5pmol/l; P=NS). The LH peak occurred earlier in the eCG group (38.4+/-2.0h after device withdrawal) and in the EB group (41.0+/-4.1h), than in the control group (46.3+/-5.1h; P<0.05). Ovulation occurred earlier in the eCG group (5/7) and in the EB group (8/8) (58.8+/-2.7h and 63.0+/-5.6h, respectively), than in the control group (7/8) (70.2+/-8.3h; P<0.05). In summary, the Short-Term Protocol induced similar concentrations of progesterone among treated goats. In addition, eCG or EB resulted in a similar increase in estradiol-17beta and a similar LH surge, which induced ovulation in most females (86.7%) in a consistent interval (about 60h) after the end of progesterone exposure.  相似文献   

13.
Basal adenylate cyclase values for corpora lutea (CL) removed from cyclic gilts on Days 3, 8, 13 and 18 were 178 +/- 61, 450 +/- 46, 220 +/- 25 and 208 +/- 18 pmol cAMP formed/min/mg protein, respectively. Basal activity was significantly elevated on Day 8 (P less than 0.001). LH-stimulatable adenylate cyclase values for CL from Days 3, 8, 13 and 18 were 242 +/- 83, 598 +/- 84, 261 +/- 27 and 205 +/- 17 pmol cAMP formed/min/mg protein respectively. Serum progesterone concentrations of 12 gilts bled every 2 days through one complete oestrous cycle ranged from 1.1 to 26.9 ng/ml with highest values between Days 8 and 12. The decline in serum progesterone concentrations was coincident with the decrease in basal adenylate cyclase activity. There was no LH-stimulatable adenylate cyclase activity present in the CL at the specific times of the oestrous cycle examined. We conclude that progesterone secretion by the pig CL is apparently dependent on basal activity of adenylate cyclase.  相似文献   

14.
The effects of two different protein synthesis inhibitors (cycloheximide and puromycin) on the ovulatory process were examined in vitro using a perfused rat ovary model. Ovaries of PMSG (20 i.u.)-primed rats were perfused for 21 h. Release of cyclic adenosine 3',5'-monophosphate (cAMP) and steroids (progesterone, testosterone, and oestradiol) was measured and the number of ovulations was estimated by counting released oocytes. Unstimulated control ovaries did not ovulate whereas addition of LH (0.1 microgram/ml) plus 3-isobutyl-1-methylxanthine (IBMX; 0.2 mM) resulted in 16.7 +/- 3.5 ovulations per treated ovary. Cycloheximide (5 micrograms/ml) totally inhibited the ovulatory effect of LH + IBMX when present from the beginning of the perfusions and also when added 8 h after LH + IBMX. No inhibition was seen when cycloheximide was added 10 h after LH + IBMX (1-1.5 h before the first ovulation; 15.2 +/- 4.4 ovulations per treated ovary). Puromycin (200 micrograms/ml) completely blocked ovulation when present from the beginning of the perfusions and the inhibition was congruent to 60% (6.5 +/- 2.2 ovulations per treated ovary) when the compound was added 8 h after LH + IBMX. Both inhibitors increased LH + IBMX-stimulated cAMP release substantially, but decreased the release of progesterone, testosterone and oestradiol. These results indicate that de-novo protein synthesis is important late in the ovulatory process for follicular rupture to occur.  相似文献   

15.
Blocking testosterone action with immunization or with a specific antagonist blocks the preovulatory surge of progesterone and ovulation in laying hens. Thus, testosterone may stimulate progesterone production in a paracrine fashion within the ovary. To test this hypothesis, we evaluated the effects of testosterone and its interaction with LH on the production of progesterone by granulosa cells in culture. Hen granulosa cells obtained from preovulatory follicles were cultured in 96 well plates. The effects of testosterone (0-100ng/ml) and/or LH (0-100ng/ml) were evaluated. LH-stimulated progesterone production in a dose response manner up to 10ng/ml (p<0.01). Testosterone, up to 10ng/ml, increased progesterone production in a dose response manner in the absence of LH and at all doses of LH up to 1ng/ml (p<0.001). However, at supraphysiological concentrations of LH (10 and 100ng/ml) there was no further increase in progesterone production caused by testosterone (p>0.05). Finally, the addition of 2-hydroxyflutamide (0-1000mug/ml) to hen granulosa cells cultured with 10ng/ml of testosterone reduced progesterone production in a dose response manner (p<0.001). In conclusion, testosterone stimulates progesterone production in preovulatory follicle granulosa cells and interacts with physiological concentrations of LH to increase progesterone production. In addition, testosterone stimulation on granulosa cells is specific since the testosterone antagonist decreased testosterone stimulatory action.  相似文献   

16.
Plasma progesterone and LH concentrations around estrus were determined for both PMSG treated (experimental animals) and non-treated (control animals) dairy cows and heifers of the Holstein Friesian and Jersey breeds, and these hormone profiles were related to the embryo quality. Most experimental animals experienced an increase in progesterone concentrations following PMSG treatment and an abrupt decrease to values below 3 nmol/l after PG injection. The mean (+/-SE) intervals from prostaglandin treatment to estrus were 46.9+/-1.8 h and 64.5+/-4.8 h for experimental and control animals, respectively. At the onset of heat the progesterone concentration in experimental animals with optimal embryo quality (group I) was significantly lower (p<0.01) than in experimental animals which yielded unfertilized eggs (group II) (1.2+/-0.1 versus 3.9+/-0.8 nmol/l) and significantly higher than the level in the control group (0.6+/-0.1 nmol/l). Following estrus the progesterone profiles in all 3 groups were studied and the length of the superovulatory cycle was measured to 26.0+/-4.8 days. The preovulatory LH surge occurred sooner after prostaglandin injection in experimental (41 h) than in control animals (65 h). The LH surge in group I occurred within a narrow range and reached a higher average level than group II (24.2+/-2.2 ng/ml and 16.3+/-3.7 ng/ml, respectively). The control group attained an even higher LH surge (31.8+/-8.8 ng/ml) than did the experimental animals. The data presented in this experiment indicate that plasma levels of progesterone and LH in PMSG-PGF(2)alpha treated animals are related to embryo or egg quality.  相似文献   

17.
Of 19 dioestrous ewes given 50 micrograms GnRH on Day 10 of the oestrous cycle, 15 (79%) formed corpora haemorrhagica within 2 days after injection of GnRH. After excision of the Day 10 spontaneous CL, the GnRH-induced CL were short lived when compared to spontaneous CL in saline-treated ewes (3.1 +/- 0.4 vs 17.3 +/- 0.3 days, respectively). Hysterectomy of ewes bearing the GnRH-induced CL prevented regression of the short-lived CL, thus extending functional lifespan greater than or equal to 38 days. Serum concentrations of progesterone produced by the GnRH-induced CL in hysterectomized ewes were less than those observed during a comparable interval (Days 7-14) in saline-treated, non-hysterectomized ewes (2.24 +/- 0.1 vs 3.67 +/- 0.15 ng/ml, respectively; P less than or equal to 0.001). When GnRH was given before (5 h before) or during (5 h after) PGF-2 alpha-induced regression of the Day 10 spontaneous CL, the GnRH-induced CL which formed were also short-lived. In contrast, when GnRH was given following (36 h after) PGF-2 alpha-induced regression of the Day 10 spontaneous CL, the CL which formed were not different in lifespan or production of progesterone from spontaneous CL. Efforts to enhance function of the GnRH-induced subnormal CL by treating ewes with the synthetic progestagen, norgestomet, to suppress follicular development after CL formation, were unsuccessful.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Père David's deer hinds were treated with GnRH, administered as intermittent i.v. injections (2.0 micrograms/injection at 2-h intervals) for 4 days, or as a continuous s.c. infusion (1.0 micrograms/h) for 14 days. These treatments were given early (February-March) and late (May-June) in the period of seasonal anoestrus. The administration of repeated injections of GnRH increased mean LH concentrations from pretreatment values of 0.54 +/- 0.09 to 2.10 +/- 0.25 ng/ml over the first 8 h of treatment in early anoestrus, and from 0.62 +/- 0.11 to 2.73 +/- 0.49 ng/ml in late anoestrus. The mean amplitude of GnRH-induced LH episodes was greater (P less than 0.01) in late (4.03 +/- 0.28 ng/ml) than in early (3.12 +/- 0.26 ng/ml) anoestrus, but within each replicate (early or late anoestrus), neither mean LH episode amplitude nor mean plasma LH concentrations differed significantly between the four periods of intensive blood sampling. On the basis of their progesterone profiles, 6/12 hinds had ovulated in response to treatment with injections of GnRH (1/6 in early anoestrus and 5/6 in late anoestrus), and oestrus and a preovulatory LH surge were recorded in all of these animals. Oestrus and a preovulatory LH surge were also recorded in one other animal treated in early anoestrus in which progesterone concentrations remained low. The mean times of onset of oestrus (91.0 +/- 1.00 and 62.4 +/- 0.98 h) and of the preovulatory LH surge (85.8 +/- 3.76 and 59.4 +/- 0.25 h) both occurred significantly earlier (P less than 0.001) in animals treated in late anoestrus. Continuous infusion of GnRH to seasonally anoestrous hinds resulted in an increase in mean plasma LH concentrations, but this response did not differ significantly between early (2.15 +/- 0.28 ng/ml) and late (2.48 +/- 0.26 ng/ml) anoestrus. Ovulation, based on progesterone profiles, occurred in 2/7 hinds in early anoestrus and in 4/6 hinds in late anoestrus. Oestrus was detected in all except one of these hinds. The mean time of onset of oestrus occurred earlier in animals treated in late anoestrus (66.2 +/- 0.32 h and 46.7 +/- 0.67 h, P less than 0.01). The administration of GnRH, given either intermittently or continuously, will induce ovulation in a proportion of seasonally anoestrous Père David's deer. However, more animals ovulate in response to this treatment in late than in early anoestrus (75% compared with 23%).  相似文献   

19.
In vitro exposure for 2 h to 250 ng/ml of pregnenolone led to increased production of progesterone and 17 alpha-hydroxyprogesterone (17 alpha-OHP) by hamster ovaries on Days 5, 10 and 15 of age. Similar incubations with 250 ng/ml progesterone or androstenedione caused significant increases in 17 alpha-OHP or testosterone, respectively. When testosterone was added in doses of 32.5, 250 and 500 ng/ml to ovaries on Days 5-30, as early as Day 5 the ovaries aromatized the androgen to estradiol. Day 30 ovaries were the most efficient in the conversion because antral follicles, the principal site for aromatization, were then present. In terms of progesterone production, 400 ng/ml of luteinizing hormone (LH) during 4 h of in vitro incubation stimulated ovaries on Days 5, 10 and 15. Cyclic adenosine 3':5' monophosphate (cAMP) at a dose of 1 mM and 5 mM stimulated progesterone production by Days 5 and 10 ovaries more efficiently than LH. However, Day 15 ovaries produced more progesterone in response to LH compared to cAMP. These experiments establish that the steroidogenic enzymes differentiate at a very early age in the hamster ovary, even before the appearance of gonadotropin receptors. The inability of the early postnatal ovary to produce steroids is apparently attributable to lack of precursors such as cholesterol or cholesterol side chain cleavage enzymes.  相似文献   

20.
To assess the accuracy of rectal palpation for detecting functional luteal tissue during the estrous cycle in Zebu cattle, 20 mature non-lactating Indobrazil cows were palpated twice weekly for 7 1/2 weeks. Blood samples were drawn for progesterone analyses at each palpation. Circulating serum progesterone levels were below 0.5 ng/ml from days 0-4 (Day 0 = day of estrus); they increased thereafter, reaching maximum levels of 3.1 ng/ml on days 9 and 10. Values declined sharply to less than 0.5 ng/ml on day 18. Regardless of the stage of the estrous cycle in 71.3% of the cases (117 out of a total of 164 observations) the circulating progesterone levels corresponded to the results of rectal examination. The criteria to assess this relationship were that the presence of CL as determined by rectal palpation would be accompanied by levels of progesterone higher than 0.5 ng/ml, whereas absence of CL would be accompanied by levels less than 0.5 ng/ml. The correlation was significantly higher (P<0.05) on days 5-17 (77.9%) than on days 0-4 (57.5%) and 18-20 (65%). To assess the correlation of both rectal examination and progesterone levels with the stage of the estrous cycle, we expected that on days 0-4 and 18-20 no palpable CL and progesterone levels less than 0.5 ng/ml would occur, whereas on days 5-17 palpable CL and progesterone levels higher than 0.5 ng/ml would be found. On this basis, a correlation of 45% (18 out of 40 observations) between expected and observed values was found on days 0-4, 76% (79 out of 104) on days 5-17 and 60% (12 out of 20) on days 18-20 of the estrous cycle. Of the total of 55 observations which fell outside the expected values, 71% was due to a wrong diagnosis of CL; 14.5% was due to progesterone levels higher or lower than the expected values, and 14.5% to both laboratory and rectal palpation findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号