首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The improvement of rate of seedling emergence and early seedling growth of maize (Zea mays L.) under cool conditions has been an objective of breeding programs in cool regions for many years. To study inheritance of emergence time, and to determine if differences in emergence time were due to differences in seedling growth, F1, F2 and backcross generations of a diallel cross of two rapidly emerging lines from CIMMYT Pool 5, 5-113 and 5-154, and two elite Corn Belt Dent lines, A619 and A632, were grown in controlled environment rooms at low temperatures.The lines from Pool 5 emerged significantly faster than A619 and A632 over a range of low temperature conditions. This difference occurred both when the lines themselves were tested and when the lines were tested as male and female parents in crosses. The Pool 5 lines converted a higher proportion of their original seed to new root and shoot tissue than did A619 and A632, indicating that they had a faster seedling growth rate. Primarily this was due to a faster loss of seed reserve, rather than a more efficient conversion process.A significant difference occurred between A619 and A632 for emergence time, but this was not due to a difference in seedling growth rate.Reciprocal differences occurred only in the F1 generation in crosses involving A619, and then marked effects could be attributed to the male parent. Reciprocal differences tended to disappear in the F2. This suggested that the genotype of the embryo and endosperm was of much greater importance than the genotype of the maternal parent in determining differences of time to emergence and seedling growth.Mid-parent heterosis occurred for time to emergence and seed loss, a measure of mean rate of utilization of seed reserve, in all crosses. High parent heterosis occurred in several crosses for these traits. High parent heterosis occurred in all crosses for efficiency of utilization of seed reserve.A generation means analysis indicated that both additive and dominance effects were present for rate of seedling growth in crosses between A632 and the Pool 5 lines.  相似文献   

2.
Summary The present study was undertaken to obtain information on average gene frequency in two heterotic populations of maize (Zea mays L.), Mezcla Amarillo Selection (MAS) and J607. Sixty-four male plants were taken in each of the populations and each of these were crossed to a different set of eight plants, four of which belonged to the same population and four to the other population. This resulted in two groups of intra-population (within MAS and within J607) and two groups of inter-population (MAS X J607 and J607 X MAS) progenies. Each group consisted of 256 full-sib progenies on the pattern of the North Carolina Design I mating system. The male plants were selfed to produce 64 S1 prgenies in each population. The materials were evaluated at two diverse locations, Ludhiana and Gurdaspur, for grain yield, ear length, ear girth, number of kernel rows, plant height, ear height and days to silk. An incomplete block design with two replications were used. The plot consisted of a 5 m long row. Ratios of estimated genetic components of variance and covariance were compared with corresponding theoretical ratios computed for a single locus for various gene frequencies and levels of dominance, and approximate ranges of the gene frequencies and their relative magnitude were worked out in the two populations. The average frequency of favourable genes for plant height was estimated as 0.6 in MAS and 0.8 in J607. For grain yield the average gene frequency was 0.8 to 0.9 in MAS and 0.7 to 0.8 in J607 whereas for ear height it was 0.5 to 0.7 in MAS and 0.4 to 0.6 in J607. The gene frequency in the two populations seemed to be similar for days to silk, ear length, ear girth and kernel rows.  相似文献   

3.
The timing of root production is one of the parameters required for modelling the root system architecture. The objectives of this study are (1) to describe the rate of appearance of adventitious root primordia of maize and their rate of emergence out of the stem; (2) to test equations for the prediction of the rank of the phytomer on which root emergence occurs, in a wide range of field situations.Maize, cultivar Dea, was grown in controlled conditions and in the field in 1987, 1988, 1989 and 1991. Plants were regularly sampled and the following data were recorded: foliar stage, number of root primordia and number of emerged roots per phytomer. Root primordia were counted in transverse thin sections in the stem.At a single plant level, root primordia differentiation occurred sequentially on the successive phytomers, with no overlapping between two phytomers. The same was true for root emergence. Roots belonging to the same phytomer emerged at approximately the same time.At a plant population level, there was a linear relationship between the rank of the phytomer on which root primordia were differentiated and cumulated degree-days after sowing. A linear relationship was also observed between the rank of the phytomer on which roots were emerging and cumulated degree-days or foliar stage. In the range of field situations tested (several years, sowing dates and planting densities), both equations gave an accurate prediction of the timing of root emergence during the plant cycle.  相似文献   

4.
Summary In hybrid breeding programs, testcross evaluation of lines can be done during the early stages of selfing (early testing) or delayed until the lines are near-homozygous. To evaluate the usefulness of early testing, the expected genetic and phenotypic correlations between testcross performance at different selfing generations were examined. The genetic correlation (r GnGn ) between testcross performance of S n and S n , (n>n) individuals or lines is equal to the square root of the ratio of their testcross genetic variances, and it is a function of the inbreeding coefficients (F) at the two selfing generations, i.e., r GnGn=[(1+F n )/(1+F n )]0.5. The genetic correlation between testcross performance of lines and their directly descended homozygous (n=) lines is 0.71 for S1; 0.87 for S2, 0.93 for S3, 0.97 for S4, 0.98 for S5, and 0.99 for S5 lines. The effectiveness of early testing is limited mainly by nongenetic effects. The square root of testcross heritability at generation n sets the upper limit on the correlation between phenotypic value at generation n and genotypic value at homozygosity. The probabilities of correctly retaining S n individuals or lines that have superior testcross performance at homozygosity (n=) indicate that early testing should be effective in identifying lines with above- and below-average combining ability. However, the risk of losing lines with superior combining ability is high if strong (best 10%) selection pressure is applied during early testing. If only a small proportion of lines is retained based on testcross performance and/or if the heritability of the trait is low, selfing for two or three generations prior to testcrossing may be desirable to increase the likelihood of retaining lines that perform well at homozygosity. The theoretical results in this study support the testcross evaluation procedures for grain yield used by most maize (Zea mays L.) breeders.A contribution from Limagrain Genetics, a Groupe Limagrain company  相似文献   

5.
6.
The first objective of this study was to map and characterize quantitative trait loci (QTL) for grain yield (GY) and for secondary traits under varying nitrogen (N) supply. To achieve this objective, a segregating F2:3 population previously developed for QTL mapping under water-limited conditions was used. The population was evaluated in Mexico under low N conditions in the dry winter season and under low and high N conditions in the wet summer season. From eight QTLs identified for GY under low N conditions, two were also detected under high N conditions. Five QTLs were stable across the two low N environments and five co-localized with QTLs identified for the anthesis-silking interval (ASI) or for the number of ears per plant (ENO) under low N conditions. The percentage of the phenotypic variance expressed by all QTLs for ASI and ENO was quite different when evaluated under low N conditions during the dry winter (40% for ASI and 22% for ENO) and the wet summer seasons (22% for ASI and 46% for ENO). The results suggest optimizing different breeding strategies based on selection index depending on the growing season. Good QTL colocalization was observed for ASI (four QTLs) and ENO (three QTLs) when looking at QTL identified under low N and water-limited conditions in the same population. The results suggest that that both secondary traits can be used in breeding programs for simultaneous improvement of maize against low N and drought stresses.  相似文献   

7.
Summary Genetic factors controlling the differential expression of somatic embryogenesis and plant regeneration of maize from tissue culture were studied in two crosses. Inbred, hybrid, F2 and backcross generations developed from crossing maize inbred A188 with two commercially important inbred maize lines (B73 and Mo17) demonstrated genetic and environmental effects on somatic embryogenesis and plant regeneration when immature zygotic embryos were cultured on MS medium. Additive gene effects were more important in both crosses than dominant gene effects for precent somatic embryogenesis and percent or number of plants regenerated per embryo when generation means were analyzed. In backcross generations of each cross, cytoplasmic, maternal and/or paternal effects were significant for frequency of somatic embryos three weeks after culture as well as frequency, or number of plants regenerated per embryo, nine weeks after culture. Analysis of genetic variances suggests at least one gene (or block of genes) controls the expression of the frequency of somatic embryogenesis in these crosses. Differences in somatic embryogenesis and plant regeneration between B73 and Mo17 are discussed. This is Journal Paper No. 11,435 of the Purdue University Agricultural Experiment Station.  相似文献   

8.
Summary Random amplified polymorphic DNA (RAPD) markers were analyzed in materials from a partial diallel, including 16 corn F1 hybrids (with five reciprocals) and their five parental inbreds. Using 21 primers, we scored a total of 140 different fragments for their presence/absence and intensity variation, where appropriate. When all 21 genotypes were taken into consideration, 20.7% of these fragments were nonpolymorphic, 37.1% were unambiguously polymorphic, and 42.1% were quantitatively polymorphic. Unambiguous polymorphisms were distinguished by the simple presence or absence of a specific fragment in the inbred genotypes, whereas quantitative polymorphisms exhibited a variation in the intensity of a fragment. Of the F1 patterns, 95.2% of the unambiguously polymorphic situations could be interpreted genetically by assuming complete dominance of the presence of the parental fragment, while 3.2% of the F1 patterns exhibited a fragment intensity that was intermediate between the two parental patterns (partial dominance). For quantitative polymorphisms, values of 88.1% for complete dominance and 5.0% for partial dominance were obtained. The results suggest that specific types of errors can be detected in RAPD analysis, that uniparental inheritance is not common, and that RAPD analysis might be more prudently used for some applications than for others.  相似文献   

9.
Summary Thirty inbred lines representing a wide range of early-maturing European elite germ plasm of maize (Zea mays L.) were assayed for RFLPs using 203 clone-enzyme combinations (106 DNA clones with restriction enzymes EcoR1 and HindIII). The genetic materials comprised 14 flint, 12 dent, and 4 lines of miscellaneous origin. Objectives were to (1) characterize the genetic diversity for RFLPs in these materials, (2) compare the level of genetic diversity found within and between the flint and the dent heterotic groups, and (3) examine the usefulness of RFLPs for assigning inbreds to heterotic groups. All but two DNA clones yielded polymorphism with at least one restriction enzyme. A total of 82 and 121 clone-enzyme combinations gave single-banded and multiple-banded RFLP patterns, respectively, with an average of 3.9 and 7.7 RFLP patterns per clone-enzyme combination across all 30 inbreds, respectively. Genetic similarity (GS) between lines, estimated from RFLP data as Dice's similarity coefficient, showed considerable variation (0.32 to 0.58) among unrelated inbreds. The mean GS for line combinations of type flint x dent (0.41) was significantly smaller than for unrelated flint lines (0.46) and dent lines (0.46), but there was considerable variation in GS estimates of individual line combinations within each group. Cluster and principal coordinate analyses based on GS values resulted in separate groupings of flint and dent lines in accordance with phylogenetic information. Positioning of lines of miscellaneous origin was generally consistent with expectations based on known breeding behavior and pedigrees. Results from this study corroborated that RFLP data can be used for assigning inbreds to heterotic groups and revealing pedigree relationships among inbreds.  相似文献   

10.
Zinc deficiency decreased pollen viability in maize (Zea mays L. cv. G2) grown in sand culture. On restoring normal zinc supply to zinc-deficient plants before the pollen mother cell stage of anther development, the vegetative yield of plants and pollen fertility could be recovered to a large extent, but the recovery treatment was not effective when given after the release of microspores from the tetrads. If zinc deficiency was induced prior to microsporogenesis it did not significantly affect vegetative yield and ovule fertility, but decreased the fertility of pollen grains, even of those which visibly appeared normal. If the deficiency was induced after the release of microspores from the tetrads, not only vegetative yield and ovule fertility but pollen fertility also remained unaffected.  相似文献   

11.
Summary When roots of five day-old maize seedlings were exposed to15N-nitrate, a constant (25–29%) proportion of the reduced15N derived from the entering15N-nitrate accumulated as insoluble15N nitrogen. Constancy was established by two hours and lasted through 12 hours at ambient15N-nitrate concentrations of 0.05 mM to 20.0 mM. Even when little15N nitrate had been reduced (<2 moles), there was a linear relationship between accumulation of insoluble15N (but not accumulation or translocation of soluble reduced15N) and total reduced15N. It is proposed that protein synthesis from the entering nitrate occurs in close association with nitrate reduction.Paper No. 9764 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC, 27695-7619, USA. This research was supported by Grant No. PCM-8118661 from the National Science Foundation.Use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the product's name or criticisms of similar ones not mentioned.  相似文献   

12.
The trajectories of seventy three nodal roots of maize were studied in two fields with loose soil structure. Their projections on horizontal and vertical planes were traced. These roots tended to remain in a vertical plane. Trajectories were related to each other by an affine transformation. Thus, all the observed trajectories could be obtained by transformation of a common root archetype. The horizontal component of the trajectories was mainly in the first 0.4 m depth of soil, in the layer where soil structure was disturbed by ploughing. This horizontal component decreased with later appearance of roots (upper internodes), but differed between the two sites. The average soil temperature during the week following root appearance accounted for differences between internodes and sites. Lungley's algorithm, which is commonly used in modelling root trajectories, was tested. A general pattern could be simulated, but the model failed to fit the trajectories in the first 100 to 200 mm of soil. As a consequence, the initial angle between the stem and the root, which is a sensitive parameter in Lungley's model, did not account for differences between root trajectories. Laboratoire d'agronomie de Colmar  相似文献   

13.
Genetic diversity for RFLPs in European maize inbreds   总被引:8,自引:0,他引:8  
Summary Restriction fragment length polymorphisms (RFLPs) have been proposed for the prediction of the yield potential of hybrids and the assignment of inbreds to heterotic groups. Such use was investigated in 66 diallel crosses among 6 flint and 6 dent inbreds from European maize (Zea mays L.) germ plasm. Inbreds and hybrids were evaluated for seven forage traits in four environments in the Federal Republic of Germany. Midparent heterosis (MPH) and specific combining ability (SCA) were calculated. Genetic distances (GD) between lines were calculated from RFLP data of 194 clone-enzyme combinations. GDs were greater for flint x dent than for flint x flint and dent x dent line combinations. Cluster analysis based on GDs showed separate groupings of flint and dent lines and agreed with pedigree information, except for 1 inbred. GDs of all line combinations in the diallel were partitioned into general (GGD) and specific (SGD) genetic distances; GGD explained approximately 20% of the variation among GD values. For the 62 diallel crosses (excluding 4 crosses of highly related lines), correlations of GD with F1 performance, MPH, and SCA for dry matter yield (DMY) of stover, ear, and forage were positive but mostly of moderate size (0.09r0.60) compared with the higher correlations (0.39r0.77) of SGD with these traits. When separate calculations were performed for various subsets, correlations of GD and SGD with DMY traits were generally small (r<0.47) for the 36 flint x dent crosses, significantly positive (r<0.53) for the 14 flint x flint crosses, and inconclusive for the 12 dent x dent crosses because of the lack of significant genotypic variation. Results indicated that RFLPs can be used for assigning inbreds to heterotic groups. RFLP-based genetic distance measures seem to be useful for predicting forage yield of (1) crosses between lines from the same germ plasm group or (2) crosses including line combinations from the same as well as different heterotic groups. However, they are not indicative of the hybrid forage yield of crosses between unrelated lines from genetically divergent heterotic groups.  相似文献   

14.
Summary The genetic control of hexokinase isozymes (ATP: d-hexose-6-phosphotransferase, E.C. 2.7.7.1, HEX) in maize (Zea mays L.) was studied by starch gel electrophoresis. Genetic analysis of a large number of inbred lines and crosses indicates that the major isozymes observed are encoded by two nuclear loci, designated Hex1 and Hex2. Five active allozymes and one null variant are associated with Hex1, while Hex2 has nine active alleles in addition to a null variant. Alleles at both loci govern the presence of single bands, with no intragenic or intergenic heteromers visible, suggesting that maize HEX's are active as monomers. Organelle preparations demonstrate that the products of both loci are cytosolic. All alleles, including the nulls, segregate normally in crosses. Vigorous and fertile plants were synthesized that were homozygous for null alleles at both loci, suggesting that other hexosephosphorylating enzymes exist in maize that are undetected with our assay conditions. Linkage analyses and crosses with B-A translocation stocks place Hex1 on the short arm of chromosome 3, 27 centimorgans from Pgd2 (phosphogluconate dehydrogenase) and Hex2 on the long arm of chromosome 6, approximately 45 centimorgans from Pgd1. It is suggested that the parallel linkages among these two pairs of duplicated genes reflects an evolutionary history involving chromosome segment duplication or polyploidy.Paper No. 10170 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC  相似文献   

15.
Sodium dodecylsulfate-polyacrylamide gel electrophoresis reveals that zein prepared from normal maize inbred (Zea mays L.) contains six separable components. Z1 and Z2 are the predominant species, with molecular weights of 21,800 and 19,000 daltons. Amino acid analysis of these two components shows that both are rich in glutamic acid, leucine, and proline, but low in lysine. Of the four minor bands, Z3, Z4, Z5, and Z6, the latter two exist only in trace amounts. A mutation at the opaque-2 locus severely suppresses the synthesis of Z1. The nonallelic mutant, opaque-7, strongly suppresses the synthesis of Z3 and Z4, while slightly reducing Z2. On the other hand, the floury-2 mutant appears to reduce the synthesis of these six proteins in the same relative proportion. In the double mutant combinations, opaque-2 apparently is epistatic to opaque-7 and floury-2 in the synthesis of zein components. The glutelin fraction shows a more complex banding pattern; however, qualitative differences are not apparent among the mutant lines examined.This research was supported in part by a grant from the Lilly Endowment.Journal Paper No. 6100 of the Purdue University Agricultural Experimental Station.  相似文献   

16.
Summary Two maize (Zea mays L.) populations, AS1(S) and ECR-A, were evaluated for allozyme frequency changes associated with selection for improved seedling emergence, early season vigor and early maturity. Eleven marker loci were examined and four loci were used for indirect selection in an attempt to modify cold tolerance and maturity. Allozyme-selected divergent subpopulations were produced by compositing selected S1 progeny from cycle one (C1) of AS1(S) and from C2 of ECR-A. These subpopulations and S1 generations from all cycles resulting from phenotypic selection, ECR-A C1 through C7 and AS1(S) CO through C6, were tested in cold tolerance and agronomic performance trials over five environments in 1986. Seedling emergence and seedling dry weight did not improve with phenotypic selection in ECR-A, while plant height, ear height, grain yield, grain moisture, days to mid-silk and days to mid-pollen were reduced significantly. Contrasts between divergent allozyme-selected subpopulations from ECR-A were significant for grain moisture and mid-pollen date. For AS1(S), seeding emergence increased, while plant and ear height decreased with phenotypic selection. Contrasts between allozyme-selected subpopulations were significant for plant and ear height. Changes associated with marker-based selection for AS1(S) were not in the same direction as with phenotypic selection. Selection for favorable allozyme genotypes may be effective in changing certain traits in populations that have been modified by direct selection, however results may not be predictable.Contribution from the Department of Agronomy, Wisconsin Agric. Exp. Stn., Madison, WI. Part of a thesis submitted by the senior author in partial fulfillment of the requirements for a Ph. D. received June, 1987. Research supported by the College of Agric. and Life Sci., University of Wisconsin-Madison, Dekalb-Pfizer Genetics, Garst Seed Company, and Pioneer Hi-Bred.  相似文献   

17.
18.
Summary Twelve U.S. Corn Belt open-pollinated and five adapted exotic populations of maize (Zea mays L.) were assayed for allozyme (allele) variation at 13 enzyme marker loci. Extensive allozyme variability was observed in all populations studied. No locus was monomorphic over all populations. Each of the lociIdh2, Got1, Mdh2, Pgd1, andPgd2 expressed two allozymes over all populations,Adh1, Acp1, Prx1, andEst1 each had three allozymes present,Est4, Glu1, andEnp1 had five allozymes, andAcp4 had six allozymes present. Significant deviations of genotypic frequencies were detected from Hardy-Weinberg equilibrium frequencies and 94% of average Fixation Index values indicated heterozygote deficiencies, which suggested that nonrandom mating and/or natural selection favoring homozygotes were possible factors affecting the maintenance or loss of genetic variability marked by these enzyme loci. Genetic distance and cluster analyses indicated that the observed genetic variability at the 13 enzyme loci was closely related to Dent and Flint types of maize.  相似文献   

19.
Summary Tassel branch numbers of six crosses of maize (Zea mays L.) were analyzed to determine inheritance of this trait. Generation mean analyses were used to estimate genetic effects, and additive and nonadditive components of variance were calculated and evaluated for bias due to linkage. Both narrow-sense and broad-sense heritabilities were estimated. Additive genetic variance estimates were significant in five of the six crosses, whereas estimates of variance due to nonadditive components were significant in only three crosses. Additionally, estimates of additive variance components usually were larger than corresponding nonadditive components. There was no evidence for linkage bias in these estimates. Estimates of additive genetic effects were significant in four of six crosses, but significant dominance, additive × additive and additive × dominance effects also were detected. Additive, dominance, and epistatic gene action, therefore, all influenced the inheritance of tassel branch number, but additive gene action was most important. Both narrow-sense and broadsense heritability estimates were larger than those reported for other physiological traits of maize and corroborated conclusions concerning the importance of additive gene action inferred from analyses of genetic effects and variances. We concluded that selection for smalltasseled inbreds could be accomplished most easily through a mass-selection and/or pedigree-selection system. Production of a small-tasseled hybrid would require crossing of two small-tasseled inbreds. We proposed two genetic models to explain unexpected results obtained for two crosses. One model involved five interacting loci and the other employed two loci displaying only additive and additive × additive gene action.Journal Paper No. J-9231 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011. Project No. 2152  相似文献   

20.
We observed the release of the benzoxazinoids defense molecules on the surface of the primary root and the coleoptilar node in Zea mays during the emergence of lateral- and crown-roots, respectively. At later stages of crown root and lateral root development, benzoxazinoids around the emerged roots were no longer observed. Specific mutants revealed that the developmental status of the emerged roots was not important for the release of benzoxazinoids, but the breakage of the epidermis by emerging roots was. This is the first report of benzoxazinoid-release during normal development controlled by endogenous developmental programs. Release of benzoxazinoids around the emerging roots supports the idea that defense molecules accumulate at the site of root emergence in order to reduce pathogenic infections. We discuss possible explanations for the evolution of two different developmental mechanisms of root emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号