首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

This paper is the first to directly link two types of ion channel regulation pathway into an emerging and complex CBL–CIPK signal system in wooden plant.

Abstract

In Arabidopsis thaliana, the calcineurin b-like (CBL) 1 gene has been shown to be necessary in response to abiotic stresses. In this study, we identified CBL1 in the woody plant Populus euphratica, designated as PeCBL1. Heterologous expression of PeCBL1 could build the resistance of sensitive phenotypes to low K+ stress in the corresponding Arabidopsis cbl1/cbl9 mutant, and display a salt-sensitive phenotype compared with the mutant. Protein interaction analysis showed that PeCBL1 can interact with PeCIPK24, 25 and 26, and form different complexes of PeCBL–PeCIPK. To further investigate the mechanism of PeCBL1, we analyzed the fluxes of K+ and Na+ in roots of the wild-type Arabidopsis, cbl1/9 mutant, and PeCBL1 transgenic plants under low K+ stress and high Na+ stress. These analyses revealed that, compared to the cbl1/9 mutant, the PeCBL1 transgenic plant roots exhibited a higher capacity to absorb K+ after exposure to low K+ stress, and a lower capacity to discharge Na+ after exposure to salt stress. The results suggest that CBL1 interacts with CIPK24, CIPK25 and CIPK26 to regulate Na+/K+ homeostasis in Populus euphratica.  相似文献   

2.

Key message

SOS3 mediates calcium dependent actin filament reorganization that plays important roles in plant responses to salt stress.

Abstract

Arabidopsis salt overly sensitive 3 (SOS3) plays an important role in plant salt tolerance by regulation of Na+/K+ homeostasis. Plants lacking SOS3 are hypersensitive to salt stress and this phenomenon can be partially rescued by the addition of calcium. However the mechanism underlying remains elusive. We here report that the organization of actin filaments in sos3 mutant differs from that in wild-type plant. Under salt stress abnormal actin assembly and arrangement in sos3 are more pronounced, which can be partially complemented by addition of external calcium or low concentration of latrunculin A, an actin monomer-sequestering agent. The effects of calcium and Lat A on actin filament organization of sos3 mutant are accordant with their effects on sos3 salt sensitivity under salt stress. These findings indicate that the salt-hypersensitivity of sos3 mutant partially results from its disordered actin filaments, and SOS3 mediated actin filament reorganization plays important roles in plant responses to salt stress.  相似文献   

3.
4.
5.

Key message

Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant.

Abstract

The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na+ and K+ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na+/H+ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1?972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na+ and Li+ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1?972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na+ or Li+ salts. The root elongation of TdSOS1?972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1?972 transgenic lines showed greater water retention capacity and retained low Na+ and high K+ in their shoots and roots. Our data showed that the hyperactive form TdSOS1?972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.  相似文献   

6.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

7.
8.

Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.

Abstract

The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.  相似文献   

9.

Key message

A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis.

Abstract

Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.  相似文献   

10.
11.
12.
Populus euphratica is a salt-tolerant tree species growing in semi-arid saline areas. A Na+/H+ antiporter gene was successfully isolated from this species through RACE cloning, and named PeSOS1. The isolated cDNA was 3665 bp long and contained a 3438 bp open reading frame that was predicted to encode a 127-kDa protein with 12 hypothetical transmembrane domains in the N-terminal part and a long hydrophilic cytoplasmic tail in the C-terminal part. The amino acid sequence of this PeSOS1 gene showed 64% identity with the previously isolated SOS1 gene from the glycophyte Arabidopsis thaliana. The level of protein expressed by PeSOS1 in the leaves of P. euphratica was significantly up-regulated in the presence of high (200 mM) concentrations of NaCl, while the mRNA level in the leaves remained relatively constant. Immunoanalysis suggested that the protein encoded by PeSOS1 is localized in the plasma membrane. Expression of PeSOS1 partially suppressed the salt sensitive phenotypes of the EP432 bacterial strain, which lacks the activity of the two Na+/H+ antiporters EcNhaA and EcNhaB. These results suggest that PeSOS1 may play an essential role in the salt tolerance of P. euphratica and may be useful for improving salt tolerance in other tree species. Yuxia Wu and Nan Ding contributed equally to this work.  相似文献   

13.
14.
15.

Key message

PtHSP17.8 was regulated by various abiotic stresses. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses through maintain ROS homeostasis and cooperate with stress-related genes in Arabidopsis.

Abstract

Small heat shock proteins (sHSPs) play important roles in response to diverse biotic and abiotic stresses, especially in heat tolerance. However, limited information is available on the stress tolerance roles of sHSPs in woody species. To explore the function of sHSPs in poplar, we isolated and characterized PtHSP17.8 from Populus trichocarpa. Phylogenetic analysis and subcellular localization revealed that PtHSP17.8 was a cytosolic class I sHSP. The gene expression profile of PtHSP17.8 in various tissues showed that it was significantly accumulated in stem and root, which was consistent with the GUS expression pattern driven by promoter of PtHSP17.8. The expression of PtHSP17.8 could be induced by various abiotic stresses and significantly activated by heat stress. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses in Arabidopsis. The seedling survival rate, root length, relative water content, antioxidative enzyme activities, proline, and soluble sugar content were increased in transgenic Arabidopsis under heat and salt stresses, but not in normal condition. The co-expression network of PtHSP17.8 were constructed and demonstrated many stress responsive genes included. The stress-related genes in the co-expression network were up-regulated in the PtHSP17.8 overexpression seedlings. These results suggest that PtHSP17.8 confers heat and salt tolerances in plants.
  相似文献   

16.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance.  相似文献   

17.
18.
19.

Background

Plants growing in their natural habitat represent a valuable resource for elucidating mechanisms of acclimation to environmental constraints. Populus euphratica is a salt-tolerant tree species growing in saline semi-arid areas. To identify genes involved in abiotic stress responses under natural conditions we constructed several normalized and subtracted cDNA libraries from control, stress-exposed and desert-grown P. euphratica trees. In addition, we identified several metabolites in desert-grown P. euphratica trees.

Results

About 14,000 expressed sequence tag (EST) sequences were obtained with a good representation of genes putatively involved in resistance and tolerance to salt and other abiotic stresses. A P. euphratica DNA microarray with a uni-gene set of ESTs representing approximately 6,340 different genes was constructed. The microarray was used to study gene expression in adult P. euphratica trees growing in the desert canyon of Ein Avdat in Israel. In parallel, 22 selected metabolites were profiled in the same trees.

Conclusion

Of the obtained ESTs, 98% were found in the sequenced P. trichocarpa genome and 74% in other Populus EST collections. This implies that the P. euphratica genome does not contain different genes per se, but that regulation of gene expression might be different and that P. euphratica expresses a different set of genes that contribute to adaptation to saline growth conditions. Also, all of the five measured amino acids show increased levels in trees growing in the more saline soil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号