首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SUMMARY 1. Stream reaches contain assortments of various habitat types that can be defined at different spatial scales, such as channel unit (e.g. pools, riffles) and subunit (patches within channel units). We described longitudinal (upstream–downstream) patterns of stream habitat structure by considering subunits as structural elements, and examined their effects on the abundance of masu salmon ( Oncorhynchus masou ) and rosyface dace ( Leuciscus ezoe ) in a third-order tributary of the Teshio River in northern Hokkaido, Japan.
2. Nine subunit types were determined on the basis of water depth, current velocity and substrate, using 0.5 × 0.5 m grids. Although both masu salmon and rosyface dace used pools as a major habitat, the former preferred a subunit type occurring at pool heads (PH subunit) while the latter preferred a slow-current edge type (SE-2 subunit).
3. Along the course of the stream, slow-edge subunits (SE-1, 2 and 3) increased in frequency downstream while fast-edge subunits (FE-1 and 2) decreased, suggesting a downstream development of slow-current edges. Regression analyses indicated that longitudinal variation in masu salmon abundance was explained by the area of PH, rather than pools. Masu salmon density increased with the area of PH. Rosyface dace abundance was explained by a combination of water depth and the area of SE-2, both effects being positive.
4. Longitudinal variations in the abundance of both species were related to the abundance of their preferred habitat at the subunit scale, rather than channel-unit scale. The results emphasise the importance of fine-scale patchiness when examining stream fish habitats.  相似文献   

2.
1. Endangered native populations of stream salmonids in Japan face three major threats: (i) negative interactions with introduced hatchery‐reared fish, (ii) fragmentation of habitat by impassable dams and (iii) recreational angling. 2. To prevent imminent extinction of many local populations, we evaluated these threats and possible conservation actions for red‐spotted masu salmon (Oncorhynchus masou ishikawae) and white‐spotted charr (Salvelinus leucomaenis japonicus) in the Fuji River system in central Japan. 3. Red‐spotted masu salmon and white‐spotted charr occupied only 0.73 and 2.4% of suitable thermal habitats, respectively, with masu salmon typically occupying habitats closer to human population centres. 4. Population viability analysis resulted in a 100‐year probability of extinction of 78.1% for masu salmon and 48.1% for charr. However, extinction risk of both species was predicted to be <5% if the carrying capacity increased from 141 to 303 for masu salmon and from 94 to 125 for charr, by allowing fish passage at the lower end of the habitat, and if annual adult survival rate increased by 0.04. Adult survival rate was the principal factor associated with population persistence. 5. To conserve isolated populations of stream‐dwelling salmonids, we recommend (i) assessing the distribution of remnant native and non‐native fish populations, (ii) that fishing regulations are modified to improve adult survival and population persistence and (iii) that fragmented reaches be reconnected to adjacent habitat, for example by removing or modifying artificial barriers to increase the carrying capacity of the isolated populations. Reconnection of fragmented reaches should, however, be avoided if it results in non‐native fish invading isolated populations.  相似文献   

3.
Spatial expansion and increased population abundance of masu salmon Oncorhynchus masou have been recently reported following habitat restoration in some rivers, but no studies have examined these types of changes under natural conditions. We found spatial expansion and increased population density of masu salmon parr in rivers of eastern Hokkaido where no habitat restoration had occurred during the period examined. Changes in the distribution and population densities of parr are often regarded as effects of river habitat destruction and restoration, yet such changes should be evaluated while taking into account the effects of other ocean environmental conditions as well.  相似文献   

4.
This study focuses on the strategy for the conservation of masu salmon, Oncorhynchus masou, in the northern part of the species range (via the masu populations in Sakhalin Oblast), based on data of its population structure. It is shown that masu populations that inhabit different rivers genetically differ from each other in allele frequencies at microsatellite markers. In the Naiba River basin, at least two genetically distinct masu populations exist: in the upper reaches and in a tributary, the Bolshoy Takoy River. The masu populations on Iturup Island significantly differ from those on Sakhalin Island; within Sakhalin, the masu salmon from the Chernaya River in the southwestern part of the island is genetically distinct from the southeastern Sakhalin and Aniva Bay populations. The genetic diversity of Iturup populations is substantially lower than that on Sakhalin, probably due to their small sizes. The measures for the conservation and recovery of masu salmon populations should be based primarily on their own genetic resources, or, in the case of a lack of spawners, on the base populations of their ecological/geographical region. In the latter case, masu populations of large rivers can be considered as base ones: for southeastern Sakhalin, this is masu salmon of the Naiba River; for Aniva Bay, this is masu salmon of the Lyutoga River. Transplantation of fish, fertilized eggs, or any other genetic material from a population that is different genetically and inhabits the waters with different ecological gradients should be strongly restricted. The formosan masu salmon from Taiwan Island is studied as an example of a strict genetic isolate.  相似文献   

5.
Identification of the spatial extent of genetic structuring that may be influenced by evolutionary, ecological and historical factors is critical for effective conservation or management strategies. Masu salmon Oncorhynchus masou is commonly distributed in Far East, however, many local populations have been under threats of decline due to habitat destruction, overexploitation, and genetic introgression. To reveal the spatial genetic structure of native masu salmon populations in Hokkaido, masu salmon samples were collected from 16 rivers in which there was no official record of artificial releases of any masu salmon stock and were analyzed using 15 microsatellite loci. A Bayesian assignment test revealed that masu salmon populations were divided into two genetically distinct groups: the northeastern and southwestern groups. For within-group genetic structure, all populations, except for geographically proximate populations, were significantly different from each other. AMOVA revealed that genetic variation at among-group level based on groups identified assignment test was greater than that of groups based on geographic locations. There was no significant IBD for the 16 populations. However, the Mantel test revealed significant IBD for the northeastern group, but did not for the southwestern group. This study suggested that native masu salmon populations in Hokkaido exhibit a hierarchical genetic structure that is largely a result of their precise homing behavior. The results of this study also highlight the importance of defining populations by using genetic data rather than by using predefined populations based on geographic locations for the correct determination of genetic structure.  相似文献   

6.
Artificially grown native species are released into natural environments to increase biological resources or to recover threatened populations. Such stocks typically have enhanced survivability and may outcompete wild conspecifics as so-called native invaders. In addition, it is likely that the competitive effects of native invaders on native species are more intense than those of nonnative invaders. To test these hypotheses, an enclosure experiment was conducted using young-of-the-year wild and hatchery (normally grown to a relatively large size to increase survival after stocking) native masu salmon, Oncorhynchus masou, and nonnative brown trout, Salmo trutta (which attain a smaller size than masu salmon). Competitive effects between these fishes were evaluated in terms of stomach fullness and specific growth rate of the wild masu salmon. The magnitude of the relationship between stomach fullness and growth between the experimental treatments revealed a similar pattern, suggesting that competition for foraging habitat most affected their growth. Wild masu salmon were negatively affected by hatchery conspecifics, and the effects were greater than those caused by brown trout. We propose that these outcomes were caused by competitive dominance as a consequence of body size differences. In conclusion, the results support the hypothesis that size-enhanced hatchery masu salmon have the potential to function as native invaders, and the negative effects of artificial stocks on wild masu salmon could be greater than those caused by a nonnative invader.  相似文献   

7.
The relative effects of inter- and intra-specific competition on the distribution of stocked salmon in relation to depth and gradient were investigated in an upland stream during two summer sampling periods. The stream was divided into two areas by an impassable fish barrier, and trout were removed from the upstream section prior to 2 years of salmon stocking. A small amount of trout re-immigration to the cleared area occurred. Under sympatric conditions in the downstream section the fry of both species were significantly more abundant in shallow water, whereas the yearling and older fish tended to inhabit the deeper, slow-flowing areas. Under near allopatric conditions in the cleared section salmon fry changed their distribution to include deeper areas, with shallow, fast-flowing water becoming the least preferred habitat. This trend for a wide distribution of salmon fry over all the available habitat in the upstream section was maintained in the second year when parr were present but trout remained at very low densities. It was therefore concluded that high inter-specific competition from trout was responsible for restricting the distribution of salmon fry to shallow habitat in the control area. Intra-specific competition from older salmon apparently only affected the growth and survival of salmon fry. The regulating mechanisms involved in these inter- and intra-specific effects are discussed in terms of competition for stream resources and predation. Recommendations based on the findings are made for stocking and habitat management of salmonid waters.  相似文献   

8.
According to materials from original investigations in Kamchatka as well as published data, the population structure and geographical variation of the masu salmon Oncorhynchus masou are considered in the species area. The intraspecies structure, dates of their run to rivers, dates of spawning, traits of spawning, size-age and sex composition, fecundity, biological traits of parr, downstream migration of smolts are investigated. The relationship is shown between the manifestations of geographical variation of masu salmon and the factor of temperature. It is assumed that the global warming of climate would contribute to the advancement of this species to northern areas and to the increase in its abundance.  相似文献   

9.
A critical challenge for ecologists is to understand the functional significance of habitat heterogeneity and connectivity for mobile animals. Here, we explore how a thermo-regulating fish responds to annual variation in the spatial patterning of thermal and trophic resources. In a third-order stream in coastal Alaska, juvenile coho salmon forage on sockeye salmon eggs at night in cold water and then move to warmer water to increase their digestive capacity. We mapped the spatial distributions of water temperature, juvenile coho salmon, and spawning sockeye salmon across a 5-year period during which summer discharge varied by greater than fivefold. In low flow years, warm water (9–12°C) was only available in thalweg (that is, main-channel) habitat at least approximately 400 m upstream of the cooler habitat (3–7°C) where sockeye salmon spawned. In high flow years, the entire stream thalweg was isothermal at 7–8°C, but inundated off-channel areas generated warm habitats (9–12°C) laterally adjacent to the downstream regions where sockeye salmon spawned. The daytime spatial distribution of juvenile coho salmon shifted from headwater thalweg habitats in low flow years, to downstream off-channel habitats in high flow years. In all years, the majority of juvenile coho salmon sampled during the daytime were found in warm habitat units without sockeye salmon present, yet they exhibited diet contents comprised virtually entirely of sockeye salmon eggs. Thus, thermoregulatory movements by coho salmon were able to track an annually shifting mosaic of water temperature. Our results demonstrate how the spatial habitat heterogeneity and connectivity of intact floodplains can in turn buffer aquatic organisms from high levels of temporal variation in habitat conditions and resource abundance.  相似文献   

10.
Spawning site selection by female salmon is based on complex and poorly understood tradeoffs between the homing instinct and the availability of appropriate habitat for successful reproduction. Previous studies have shown that hatchery-origin Chinook salmon (Oncorhynchus tshawytscha) released from different acclimation sites return with varying degrees of fidelity to these areas. To investigate the possibility that homing fidelity is associated with aquatic habitat conditions, we quantified physical habitat throughout 165?km in the upper Yakima River basin (Washington, USA) and mapped redd and carcass locations from 2004 to 2008. Principal components analysis identified differences in substrate, cover, stream width, and gradient among reaches surrounding acclimation sites, and canonical correspondence analysis revealed that these differences in habitat characteristics were associated with spatial patterns of spawning (p?<?0.01). These analyses indicated that female salmon may forego spawning near their acclimation area if the surrounding habitat is unsuitable. Evaluating the spatial context of acclimation areas in relation to surrounding habitat may provide essential information for effectively managing supplementation programs and prioritizing restoration actions.  相似文献   

11.
Habitat fragmentation by damming can affect the persistence of single species population and also coexistence of two or more species through intensified competition. This study examined the effects of habitat fragmentation by damming on the coexistence of two stream-dwelling salmonids: the southern form of white-spotted charr (Salvelinus leucomaenis japonicus) and the red-spotted masu salmon (Oncorhynchus masou ishikawae). We examined charr, salmon, and dam distributions in 27 streams of the Fuji River basin, central Japan. In the 1970s, there were streams with five sympatric and 22 allopatric populations (n = 13 for charr, n = 9 for salmon). However, from the 1970s to 2004, 356 impassable dams were constructed in the surveyed streams, and four of the five sympatric streams became allopatric. In the extant sympatric stream, more than 20 dams fragmented habitat. Species distributions were separated by dams (with decreasing altitude) in the following order: extirpation area, charr-dominant area, and salmon-dominant area. Within the uppermost sympatric section (i.e., situated between the dams), salmon congregated in the largest uppermost pool just below the dam; despite these conditions, salmon frequency increased in the downstream direction at the stream scale. The results suggest that habitat fragmentation threatens the coexistence of stream-dwelling charr and salmon at both the basin and stream scales. We believe that exclusion of one species by another is likely in extremely fragmented habitats with minimal gradients and little variation in physical conditions (through reduced stream gradient and increased sand sedimentation caused by damming). In addition, multiple sites of damming ensure that there are no salmonid refuges from the collapse of metapopulation structure. In such fragmented habitats, even small tributaries serve important roles, as they are used mainly by salmonid fry and juveniles. We propose that habitats of native salmonids should be maximized by reconnecting fragmented habitats as part of a broader management plan.  相似文献   

12.
Dynamics of biological invasions may be complicated in size-structured animal populations. Differences in timing of life history events such as juvenile emergence create complex interaction webs where different life stages of native and non-native species act as predators, competitors, and prey. Stream salmonids are an ideal group for studying these phenomena because they display competition and predation in size-structured populations and have been introduced worldwide. For example, introduced rainbow trout (Oncorhynchus mykiss) are invading streams of Hokkaido Island, Japan and have caused declines in native masu salmon (O. masou) populations. However, age-0 rainbow trout emerge later than age-0 masu salmon and are smaller, which raises the question of why they are able to recruit and therefore invade in the face of a larger competitor. We conducted experiments in laboratory stream channels to test effects of increasing density of age-0 and age-1 rainbow trout on age-0 masu salmon. Age-1 rainbow trout dominated age-0 masu salmon by aggressive interference, relegating them to less favorable foraging positions downstream and reducing their foraging frequency and growth. The age-1 trout also reduced masu salmon survival by predation of about 40% of the individuals overall. In contrast, age-0 rainbow trout had little effect on age-0 masu salmon. Instead, the salmon dominated the age-0 trout by interference competition and reduced their survival by predation of 60% of the individuals. In each case, biotic interactions by the larger species on the smaller were strongly negative due to a combination of interspecific competition and intraguild predation. We predict that together these produce a positive indirect effect in the interaction chain that will allow the recruitment of rainbow trout in the face of competition and predation from age-0 masu salmon, and thereby facilitate their invasion in northern Japan.  相似文献   

13.
1. Habitat structure and habitat use by juvenile masu salmon, Oncorhynchus masou Brevoort, in small streams in northern Hokkaido, Japan, were examined by considering 'subunits' (patches within channel units) as structural elements of stream reaches.
2. Whole wetted channel surfaces of three study reaches were divided into 0.5 × 0.5 m quadrats, which were grouped into eight subunit types according to water depth and velocity, and substratum conditions by a cluster analysis. The subunit distribution showed a regular mosaic pattern corresponding to the channel-unit sequence in each of the three reaches.
3. Juvenile masu salmon exhibited a strong preference for a subunit type characterized by greater depth and moderate current velocity (deep–moderate subunit; mean depth = 0.29 m; mean velocity = 0.19 m s−1). This subunit type usually occurred downstream of stretches with fast current. The preference of masu salmon for the deep–moderate subunit could be because of its usual spatial position in relation to other subunit types as well as to the characteristics of the subunit itself.
4. The results suggest that the value of a habitat is determined not only by the characteristics of the habitat itself, but also by those of adjacent habitats. Therefore, habitat use by stream fish should be studied in the context of the whole 'in-stream landscapes'.  相似文献   

14.
1. The effects of woody debris on stream habitat of juvenile masu salmon ( Oncorhynchus masou ) were examined at two spatial scales, stream reach and channel unit, for first to thirdorder tributaries of the Teshio River in northern Hokkaido, Japan. The fortyeight study reaches were classified into three distinct types: coarsesubstrate steppool (CSP), coarsesubstrate poolriffle (CPR) and finesubstrate poolriffle (FPR) reaches. Each reach type included reaches with different riparian settings, broadly classified as forest (relatively undisturbed forest and secondary forest after fires) or grassland (bamboo bushland and pasture).
2. The reachscale analyses showed that neither total pool volume nor pooltopool spacing was correlated with woody debris abundance in any of the three reach types. Masu salmon density was positively correlated with both woodydebris cover area and total cover area, but not with total pool volume in the reaches.
3. Channelunitscale analyses revealed that woody debris reduced nonpool velocity, increased pool depth and retained fine sediment in pools in FPR reaches, where the size of woody debris was very large relative to the substrate material size. However, woody debris did not influence any of the hydraulic variables (depth, velocity, substrate) in either nonpools or pools of CSP and CPR reaches. Habitat use by masu salmon in nonpools or pools was affected by woodydebris cover area or total cover area rather than by hydraulic variables in any of the reach types.
4. The effects of woody debris on habitat at the reach and channelunit scales in the study area were less than those indicated by previous work in the Pacific Northwest, North America, owing to the relatively small size of the riparian trees. However, the overall results suggested that woody debris in the study area contributed to masu salmon habitat by providing cover at the smaller, microhabitat scale.  相似文献   

15.
Worldwide, river fragmentation is primarily responsible for the decline of populations of migrating fish. In particular, anadromous fish species, which necessarily migrate to fresh water to reproduce, are endangered since many are no longer able to reach their natural spawning sites. In addition, pollution of rivers effectively prevents upstream or downstream movements and blocks access to spawning grounds. This article investigates how poor water quality interferes with the life history cycle of twaite shad Alosa fallax fallax (Lacépède, 1803), an anadromous clupeid fish, in the watershed of River Scheldt, a heavily impacted environment in West Europe. We used two models based on known ecological and environmental information to explain past and present twaite shad distribution within the watershed and to make inferences about a future population recovery and juvenile habitat value. We demonstrated that historical spawning areas satisfy water quality conditions necessary to support spawning and successful development of early life history stages of the twaite shad. However, poor water quality conditions just upstream the freshwater–saltwater boundary still act as an effective migration barrier for upstream movement. As a consequence, spawning grounds are inaccessible and the population is dominated by seasonal adults occurring in the lower estuarine part of the watershed. This article provides testable and diagnostic information to the watershed management in that it identifies habitat and water quality requirements needed to support the expected recovery of an endangered anadromous fish population. Guest editors: S. Dufour, E. Prévost, E. Rochard & P. Williot Fish and diadromy in Europe (ecology, management, conservation)  相似文献   

16.
17.
Summary Fluvial salmonids have evolved to use the diversity of habitats in natural streams for different life history stages and at different seasons. Required freshwater habitat of Atlantic salmon can be classified generally as that suitable (i) for spawning, (ii) for feeding during the major growing period, and (iii) for overwintering.Spawning habitat of salmon is usually in rapid water at the tail of pools on the upstream edge of a gravel bar, ideally with depths about 25 cm, in mean water velocities of about 30–45 cm s-1, with maximum velocities about 2 body lengths s-1, and with a substrate of irregularly shaped stones of cobble, pebble, and gravel.Underyearling salmon (<7 cm TL) are most common in shallow (<15 cm) pebbly riffles, whereas older and larger parr (>7 cm TL) are usually in riffles deeper than 20 cm with a coarse substrate. Depth preference increases with size. Multiple linear regression models quantifying parr habitat have identified substrate as an important variable, with a positive relationship to an index of coarseness. Negative relationships were found with mean stream width, range of discharge, and overhanging cover. Water chemistry, especially alkalinity, nitrates, and phosphates, are important regulators of production. Although similar variables had importance, coefficients among rivers differed. Interactions occur among variables. Further studies are required to quantify productive capacity of habitat for parr. Results suggest that useful models can be derived and if a river system is mapped, and stratified by habitat, then smolt yield could be predicted and the required egg deposition could be estimated.In winter, young salmon shelter among coarse substrate or move to pools, but continue feeding, with larger parr being more active.Feeding is in general opportunistic. Food consists mainly of insects, taken primarily in the water column, but also from the surface and at the bottom. Young salmon in flowing water are highly territorial but are less so in slow or still waters. In fast water, parr use their large pectoral fins to apply themselves to the substrate, allowing them to occupy this type of habitat with little expenditure of energy. Height above the substrate decreases with water velocity, but increases with temperature and social status. Although riffles are preferred habitat, and are relatively more productive, lentic waters can be occupied where there are few predators or severe competitors and may provide significant smolt yield in some systems. Selective segregation minimizes competition between salmon and brook charr or brown trout, but brook charr and brown trout may have negative effects on underyearling salmon, and on parr in pools, whereas salmon have negative effects on small brook charr and brown trout in riffles and flats. Competition by both interference and exploitation results in interactive segregation when the resource, mainly food, becomes limiting.Limited downstream movement of underyearling salmon may occur during the summer. Older juveniles may make upstream movements, but generally migrate downstream, with most movements in the spring, and a lesser peak of activity in the autumn. Dispersal tends to be mainly downstream, indicating that for full distribution, spawning areas are best located upstream. High densities of yearling parr may have negative effects on growth and survival of underyearlings in some river systems, but apparently not in others, so that future research is required in this regard. Density-dependent growth is evident where food is limiting, and can provide an indicator of densities of cohorts so that if a quantitative relationship has been derived, mean size from a sample can give an estimate of the density at that station, with minimum size occurring at carrying capacity. Such regressions vary between habitats with differing productive capabilities, so that future research could provide useful models for assessing productive capacity of a habitat, and optimum densities. Life history strategies can change with changes in density-dependent growth rates. Present stock-recruitment functions do not take environmental variables into consideration, and have limited applicability. Further research is required to determine optimum spawning requirements for salmon in different types of river systems in different geographical areas.  相似文献   

18.
Given that human activities often have negative impacts on biological populations, a common question is to find the location of greatest positive or least negative impact. Local habitat suitability is frequently used to evaluate viability of fish populations in river networks. Upper stream reaches are often undervalued, in particular when they are not navigable or do not contain commercially interesting fish. Since water flow transports certain local conditions downstream and individuals navigate river networks upstream and downstream, impacts of local perturbations can manifest elsewhere in the system, and overall effects of disturbances should be assessed on a network level. We study a model for a potadromous fish population in a system of connected stream reaches. We consider different geometries to evaluate how downstream transport and individual movement interact to determine the location of greatest and least impact of a single or two concurrent disturbances. Our results show how upper stream reaches can be highly significant for population persistence if downstream transport of abiotic conditions or upstream movement of individuals is strong.  相似文献   

19.
Many shorebird populations are declining throughout the world, concurrent with declines and degradation of wetland habitats. Such declines necessitate a more consistent approach towards conserving habitats used by shorebird populations. Individuals of many shorebird species congregate in specific areas during their non-breeding season. Worldwide, non-breeding areas are designated as ‘important’ for shorebird conservation based primarily on the abundance of birds found in an area. However, the boundaries of any area are often defined with incomplete information regarding how shorebirds use that habitat. This paper discusses examples in Australia where improved knowledge of shorebird habitat use led to the identification of very different boundaries of important shorebird areas than those identified originally. We highlight how simple questioning of those who count shorebirds in an area, led to an improved understanding of which areas were apparently used by the same local population of non-breeding shorebirds. Subsequent analysis of available count, recapture and/or home range data of particular shorebird species is needed to verify expert opinion regarding most of these boundaries. We review how enhanced boundaries improve the ability of shorebird monitoring to detect population changes; allow management of shorebird habitats at relevant spatial scales; and lead to appropriate designations of important areas. While the kinds of approaches to boundary setting described here are not new, they are not consistently applied worldwide. We suggest additional guidelines to those produced under the Ramsar Convention in regard to designating important areas. We also call for more studies on the movements of migratory shorebirds during the non-breeding season to direct more consistent boundary setting around important non-breeding habitats used by local populations of migratory shorebirds.  相似文献   

20.
Although dam removal has become an increasingly popular tool for river restoration, there is limited knowledge regarding the ecological effects of dam removal. The purpose of our study was to document feeding habits of coexisting brook charr, brown trout, and rainbow trout above and below a dam that is in the process of a staged removal. Modification of sediment transport caused by Stronach Dam since 1912 has affected stream channel configuration, fish habitat, and many other physical and biological processes. In order to document salmonine feeding habits above and below the dam, we selected zones to represent downstream conditions and areas of river upstream of the dam that encompassed the original reservoir and a stretch of river further upstream that was not hydraulically influenced by the dam. Because physical habitat largely governs aquatic community composition in streams, we expected these effects to be reflected in the fish and macroinvertebrate communities. In particular, we expected limited prey availability and salmonine feeding in the impacted upstream and downstream zones characterized by fine substrate composition and greater macroinvertebrate diversity and salmonine feeding opportunities in the non-impacted zone characterized by coarse substrate. We also expected mean percent wet stomach content weights to be higher downstream, as other studies have documented an increase in piscivory on blocked migratory prey species downstream of dams. Contrary to expectations, the downstream zone of the river contained the highest abundance of drifting invertebrate taxa and, although differences in habitat occurred among the zones, the diversity of drifting macroinvertebrates and stomach contents of salmonines were similar throughout the river. Thus, in this case, the presence of altered habitat caused by a dam did not appear to negatively affect salmonine food habits. Consequently, we expect no major changes in salmonine food habits after the dam removal is completed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号