首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

An automated process using a cascade classifier allowed the rapid assessment of the density and distribution of stomata on microphotographs from leaves of two oak species.

Abstract

Stomatal density is the number of stomata per unit area, an intensively studied trait, involved in the control of CO2 and H2O exchange between leaf and atmosphere. This trait is usually estimated by counting manually each stoma on a given surface (e.g., a microphotograph), usually repeating the procedure with images from different parts of the leaf. To improve this procedure, we tested the performance of a cascade classifier to automatically detect stomata on microphotographs from two oak species: Quercus afares Pomel and Quercus suber L. The two species are phylogenetically close with similar stomatal morphology, which allowed testing the reuse of the cascade classifier on stomata with similar shape. The results showed that a cascade classifier trained on only 100 sample views of stomata from Q. afares was able to rapidly detect stomata in Q. afares as well as in Q. suber with a very low number of false positives (5 %/1.9 %) and a small number of undetected stomata (14.8 %/0.74 %), when partial stomata near the edge of the microphotographs were ignored. The remaining undetected stomata were due to obstacles such as trichomes. As an example of further applications, we used the positions detected by the cascade classifier to assess the spatial distribution of stomata and group them on the leaf surface. To our knowledge this is the first time that a cascade classifier has been applied to plant microphotographs, and we were able to show that it can dramatically decrease the time needed to estimate stomatal density and spatial distribution.  相似文献   

2.

Key message

Our results demonstrate that the flavonoids biosynthetic pathway can be effectively manipulated to confer enhanced plant root growth under water-stress conditions.

Abstract

Abscisic acid (ABA) is one of most important phytohormones. It functions in various processes during the plant lifecycle. Previous studies indicate that ABA has a negative effect on root growth and branching. Auxin is another key plant growth regulator that plays an essential role in plant growth and development. In contrast to ABA, auxin is a positive regulator of root growth and development at low concentrations. This study was performed to help understand whether flavonoids can suppress the effect of ABA on lateral root growth. The recessive TRANSPARENT TESTA GLABRA 1 (ttg1) mutant was characterized on ABA and sucrose treatments. It was determined that auxin mobilization could be altered by modifying flavonoids biosynthesis, which resulted in alterations of root architecture in response to ABA treatment. Moreover, transgenic TTG1-overexpression (TTG1-OX) seedlings exhibited enhanced root length and lateral root number compared to wild-type seedlings grown under normal or stress conditions. Genetic manipulation of the flavonoids biosynthetic pathway could therefore be employed successfully for the improvement of plant root systems by overcoming the inhibition of ABA and some abiotic stresses.  相似文献   

3.

Key message

Development of wheat- D. villosum 1V#4 translocation lines; physically mapping the Glu - V1 and Gli - V1 / Glu - V3 loci; and assess the effects of the introduced Glu - V1 and Gli - V1 / Glu - V3 on wheat bread-making quality.

Abstract

Glu-V1 and Gli-V1/Glu-V3 loci, located in the chromosome 1V of Dasypyrum villosum, were proved to have positive effects on grain quality. However, there are very few reports about the transfer of the D. villosum-derived seed storage protein genes into wheat background by chromosome manipulation. In the present study, a total of six CS-1V#4 introgression lines with different alien-fragment sizes were developed through ionizing radiation of the mature female gametes of CS––D. villosum 1V#4 disomic addition line and confirmed by cytogenetic analysis. Genomic in situ hybridization (GISH), chromosome C-banding, twelve 1V#4-specific EST–STS markers and seed storage protein analysis enabled the cytological physical mapping of Glu-V1 and Gli-V1/Glu-V3 loci to the region of FL 0.50–1.00 of 1V#4S of D. villosum. The Glu-V1 allele of D. villosum was Glu-V1a and its coded protein was V71 subunit. Quality analysis indicated that Glu-V1a together with Gli-V1/Glu-V3 loci showed a positive effect on protein content, Zeleny sedimentation value and the rheological characteristics of wheat flour dough. In addition, the positive effect could be maintained when specific Glu-V1 and Gli-V1/Glu-V3 loci were transferred to the wheat genetic background as in the case of T1V#4S-6BS·6BL, T1V#4S·1BL and T1V#4S·1DS translocation lines. These results showed that the chromosome segment carrying the Glu-V1 and Gli-V1/Glu-V3 loci in 1V#4S of D. villosum had positive effect on bread-making quality, and the T1V#4S-6BS·6BL and T1V#4S·1BL translocation lines could be useful germplasms for bread wheat improvement. The developed 1V#4S-specific molecular markers could be used to rapidly identify and trace the alien chromatin of 1V#4S in wheat background.  相似文献   

4.

Key message

Using an extensive dataset for 39 subtropical broadleaved tree species, we found traits of the leaf economics spectrum to be linked to mean stomatal conductance but not to stomatal regulation.

Abstract

The aim of our study was to establish links between stomatal control and functional leaf traits. We hypothesized that mean and maximum stomatal conductance (g s) varies with the traits described by the leaf economics spectrum, such as specific leaf area and leaf dry matter content, and that high g s values correspond to species with tender leaves and high photosynthetic capacity. In addition, we hypothesized that species with leaves of low stomata density have more limited stomatal closure than those with high stomata density. In order to account for confounding site condition effects, we made use of a common garden situation in which 39 deciduous and evergreen species of the same age were grown in a biodiversity ecosystem functioning experiment in Jiangxi (China). Daily courses of g s were measured with porometry, and the species-specific g s~vpd relationships were modeled. Our results show that mean stomatal conductance can be predicted from leaf traits that represent the leaf economics spectrum, with a positive relationship being related to leaf nitrogen content and a negative relationship with the leaf carbon: nitrogen ratio. In contrast, parameters of stomatal control were related to traits unassociated with the leaf economics spectrum. The maximum of the conductance~vpd curve was positively related to leaf carbon content and vein length. The vpd at the point of inflection of the conductance~vpd curve was lower for species with higher stomata density and higher for species with a high leaf carbon content. Overall, stomata size and density as well as vein length were more effective at explaining stomatal regulation than traits used in the leaf economics spectrum.  相似文献   

5.

Key message

After cloning and mapping of wheat TaSdr genes, both the functional markers for TaSdr - B1 and TaVp - 1B were validated, and the distribution of allelic variations at TaSdr - B1 locus in the wheat cultivars from 19 countries was characterized.

Abstract

Seed dormancy is a major factor associated with pre-harvest sprouting (PHS) in common wheat (Triticum aestivum L.). Wheat TaSdr genes, orthologs of OsSdr4 conferring seed dormancy in rice, were cloned by a comparative genomics approach. They were located on homoeologous group 2 chromosomes, and designated as TaSdr-A1, TaSdr-B1 and TaSdr-D1, respectively. Sequence analysis of TaSdr-B1 revealed a SNP at the position -11 upstream of the initiation codon, with bases A and G in cultivars with low and high germination indices (GI), respectively. A cleaved amplified polymorphism sequence marker Sdr2B was developed based on the SNP, and subsequently functional analysis of TaSdr-B1 was conducted by association and linkage mapping. A QTL for GI co-segregating with Sdr2B explained 6.4, 7.8 and 8.7 % of the phenotypic variances in a RIL population derived from Yangxiaomai/Zhongyou 9507 grown in Shijiazhuang, Beijing and the averaged data from those environments, respectively. Two sets of Chinese wheat cultivars were used for association mapping, and results indicated that TaSdr-B1 was significantly associated with GI. Analysis of the allelic distribution at the TaSdr-B1 locus showed that the frequencies of TaSdr-B1a associated with a lower GI were high in cultivars from Japan, Australia, Argentina, and the Middle and Lower Yangtze Valley Winter Wheat Region and Southwest Winter Wheat Region in China. This study provides not only a reliable functional marker for molecular-assisted selection of PHS in wheat breeding programs, but also gives novel information for a comprehensive understanding of seed dormancy.  相似文献   

6.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

7.
Chemical investigation of a marine microalga, Nannochloropsis granulata, led to the isolation of four digalactosyldiacylglycerols namely, (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (1), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (3), and (2S)-1,2-bis-O-eicosapentaenoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (4), together with their monogalactosyl analogs (58). Among the isolated galactolipids 2 and 3 were new natural products. Complete stereochemistry of 1, 4, 5, 7, and 8 was determined for the first time by both spectroscopic techniques and classical degradation methods. Both mono- and digalactosyldiacylglycerols isolated from N. granulata possessed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression indicating the possible use as anti-inflammatory agents.  相似文献   

8.
9.
10.

Key message

Arabidopsis gulliver3 - D/dwarf4 - D displays growth-promoting phenotypes due to activation tagging of a key brassinosteroid biosynthetic gene DWARF4. In gul3-D/dwf4-D , the Jasmonate and Salicylate signaling pathways were relatively activated and suppressed, respectively.

Abstract

Energy allocation between growth and defense is elegantly balanced to achieve optimal development in plants. Brassinosteroids (BRs), steroidal hormones essential for plant growth, are regulated by other plant hormones, including auxin and jasmonates (JA); auxin stimulates the expression of a key brassinosteroid (BR) biosynthetic gene, DWARF4 (DWF4), whereas JA represses it. To better understand the interaction mechanisms between growth and defense, we isolated a fast-growing mutant, gulliver3-D (gul3-D), that resulted from the activation tagging of DWF4, and examined the response of this mutant to defense signals, including JA, Pseudomonas syringae pv. tomato (Pst DC3000) infection, and wounding. The degree of root growth inhibition following MeJA treatment was significantly decreased in gul3-1D/dwf4-5D relative to the wild type, suggesting that JA signaling is partially desensitized in gul3-1D. Quantitative RT-PCR analysis of the genes involved in JA and salicylic acid (SA) responses, including MYC2, PDF1.2, CORI3, PR1, and PR2, revealed that JA signaling was preferentially activated in gul3-1D, whereas SA signaling was suppressed. As a result, gul3-1D was more susceptible to a biotrophic pathogen, Pst DC3000. Based on our results, we propose a model in which BR and JA cooperate to balance energy allocation between growth and defense responses. In ambient conditions, BRs promote plant growth; however, when stresses trigger JA signaling, JA compromises BR signaling by downregulating DWF4 expression.  相似文献   

11.
The geometric and electronic structures, absorption spectra, transporting properties, chemical reactivity indices and electrostatic potentials of the planar three-coordinate organoboron compounds 1-2 and twisted reference compound Mes 3 B, have been investigated by employing density functional theory (DFT) and conceptual DFT methods to shed light on the planarity effects on the photophysical properties and the chemical reactivity. The results show that the planar compounds 1-2 exhibit significantly lower HOMO level than Mes 3 B, owing to the stronger electronic induction effect of boron centers. This feature conspicuously induces a blue shifted absorption for 1, although 1 seemingly possesses more extended conjugation framework than Mes 3 B. Importantly, the reactivity strength of the boron atoms in 1-2 is much lower than that in Mes 3 B, despite the fact that the tri-coordinate boron centers of 1-2 are completely naked. The interesting and abnormal phenomenon is caused by the strong p-π electronic interactions, that is, the empty p-orbital of boron center is partly filled by π-electron of the neighbor carbon atoms in 1-2, which are confirmed by the analysis of Laplacian of the electron density and natural bond orbitals. Furthermore, the negative electrostatic potentials of the boron centers in 1-2 also interpret that they are not the most preferred sites for incoming nucleophiles. Moreover, it is also found that the planar compounds 1-2 can act as promising electron transporting materials since the internal reorganization energies for electron are really small.
Figure
The planar effects significantly affect the frontier molecular orbital levels, absorption wavelengths, transporting properties, and chemical reactivities of compounds 1-2. The underlying origin has been revealed by density functional theory and conceptual density functional theory calculations  相似文献   

12.

Key message

Transgenic Arabidopsis and lettuce plants overexpressing AtHSP17.8 showed ABA-hypersensitive but abiotic stress-resistant phenotypes. ABA treatment caused a dramatic induction of early ABA-responsive genes in AtHSP17.8 -overexpressing transgenic lettuce.

Abstract

Plant small heat shock proteins function as chaperones in protein folding. In addition, they are involved in responses to various abiotic stresses, such as dehydration, heat and high salinity in Arabidopsis. However, it remains elusive how they play a role in the abiotic stress responses at the molecular level. In this study, we provide evidence that Arabidopsis HSP17.8 (AtHSP17.8) positively regulates the abiotic stress responses by modulating abscisic acid (ABA) signaling in Arabidopsis, and also in lettuce, a heterologous plant when ectopically expressed. Overexpression of AtHSP17.8 in both Arabidopsis and lettuce leads to hypersensitivity to ABA and enhanced resistance to dehydration and high salinity stresses. Moreover, early ABA-responsive genes, ABI1, ABI5, NCED3, SNF4 and AREB2, were rapidly induced in AtHSP17.8-overexpressing transgenic Arabidopsis and lettuce. Based on these data, we propose that AtHSP17.8 plays a crucial role in abiotic stress responses by positively modulating ABA-mediated signaling in both Arabidopsis and lettuce. Moreover, our results suggest that stress-tolerant lettuce can be engineered using the genetic and molecular resources of Arabidopsis.  相似文献   

13.
N-Acylbenzotriazoles enable the synthesis (6992 % yield) of blue to green fluorescent coumarin-labeled depsidipeptides 8a–f (quantum yields 0.0040.97) and depsitripeptides 12a–d (quantum yields 0.020.96). Detailed photophysical studies of fluorescent coumarin-labeled depsipeptides 8a–f and 12a–d are reported for both polar protic and polar aprotic solvents. 7-Methoxy and 7-diethylaminocoumarin-3-ylcarbonyl depsipeptides 8c,f and 12d are highly solvent sensitive. These highly fluorescent compounds could be useful for peptide assays. Further photophysical studies of 7-diethylaminocoumarin-labeled depsipeptides 8c,12d within the micellar microenvironment of SDS reflect their ability to bind with the biological membrane, suggesting potential applications in the fields of bio- and medicinal chemistry.  相似文献   

14.

Key message

Cosuppression of an Arabidopsis Rubisco small subunit gene RBCS3B at Arabidopsis resulted in albino or pale green phenotypes which were caused by ROS accumulation

Abstract

As the most abundant protein on Earth, Rubisco has received much attention in the past decades. Even so, its function is still not understood thoroughly. In this paper, four Arabidopsis transgenic lines (RBCS3B-7, 18, 33, and 35) with albino or pale green phenotypes were obtained by transformation with a construct driving expression of sense RBCS3B, a Rubisco small subunit gene. The phenotypes produced in these transgenic lines were found to be caused by cosuppression. Among these lines, RBCS3B-7 displayed the most severe phenotypes including reduced height, developmental arrest and plant mortality before flowering when grown under normal light on soil. Chloroplast numbers in mesophyll cells were decreased compared to WT, and stacked thylakoids of chloroplasts were broken down gradually in RBCS3B-7 throughout development. In addition, the RBCS3B-7 line was light sensitive, and PSII activity measurement revealed that RBCS3B-7 suffered severe photoinhibition, even under normal light. We found that photoinhibition was due to accumulation of ROS, which accelerated photodamage of PSII and inhibited the repair of PSII in RBCS3B-7.  相似文献   

15.

Key message

Fine mapping of the novel thermo-sensitive genic male sterility locus tms9 - 1 in the traditional TGMS line HengnongS-1 revealed that the MALE STERILITY1 homolog OsMS1 is the candidate gene.

Abstract

Photoperiod-thermo-sensitive genic male sterility (P/TGMS) has been widely used in the two-line hybrid rice breeding system. HengnongS-1 is one of the oldest TGMS lines and is often used in indica two-line breeding programs in China. In this study, our genetic analysis showed that the TGMS gene in HengnongS-1 was controlled by a single recessive gene that was non-allelic with the other TGMS loci identified, including C815S, Zhu1S and Y58S. Using SSR markers and bulked segregant analysis, we located the TGMS locus on chromosome 9 and named the gene tms9-1. Fine mapping further narrowed the tms9-1 loci to a 162 kb interval between two dCAPS markers. Sequence analysis revealed that a T to C substitution results in an amino acid change in the tms9-1 candidate gene (Os09g27620) in HengnongS-1 as compared to Minghui63. Sequencing of other rice accessions, including six P/TGMS lines, seven indica varieties and nine japonica varieties, showed that this SNP was exclusive to HengnongS-1. With multiple sequence alignment and expression pattern analyses, the rice MALE STERILITY1 homolog OsMS1 gene was identified as the candidate gene for tms9-1. Therefore, our study identified a novel TGMS locus and will facilitate the functional identification of the tms9-1 gene. Moreover, the markers linked to the tms9-1 gene will provide useful tools for the development of new TGMS lines by marker-assisted selection in two-line hybrid rice breeding programs.  相似文献   

16.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

17.

Key message

Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles.

Abstract

Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.  相似文献   

18.
19.
20.
1H-Pyrrolo[2′,3′:4,5]furo[3,2-c]pyridine-2-carboxylic acid (6a) and its 1-methyl (6b) and 1-benzyl (6c) derivatives were synthesized. 3-(5-Methoxycarbonyl-4H-furo[3,2-b]-pyrrole-2-yl)propenoic acid (1) was converted to the corresponding azide 2, which in turn was cyclized to give 3 by heating in diphenylether. The pyridone 3 obtained was aromatized with phosphorus oxychloride, then reduced with zinc in acetic acid to give methyl 1H-pyrrolo[2′,3′:4,5]furo[3,2-c]pyridine-2-carboxylate (5), which by hydrolysis gave the corresponding carboxylic acid 6a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号