首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Havana aeromycobiota diversity was studied from November 2010 to October 2011 using two complementary volumetric methods. A total of 35 fungal genera were characterised, 26 of them were recognised only by non-viable methods, six with viable methodology and the other three with both sampling methods. Furthermore, 47 species were identified by cultivation and the spores collected with the non-viable methodology. These could not be included in a specific genus, and thus, were categorised into five fungal types. In general, the main, spread worldwide, mitosporic fungi also predominated the Havana atmosphere. The predominant species were Cladosporium cladosporioides, Aspergillus flavus and Penicillium citrinum. Moreover, several Zygomycetes (Syncephalastrum racemosum, Rhizopus stolonifer and Rhizopus oryzae), Ascomycetes (Chaetomium globosum) and Basidiomycetes such as Coprinus or Ganoderma were isolated. In the present paper, the review of the airborne fungi conducted in previous studies in Cuba was completed by the detection of two new genera and the first isolation of ten new records in the Cuban atmosphere. Most of the fungi detected showed a diurnal pattern with high spore peak at 11.00–12.00.  相似文献   

2.
Fungal airborne spores were studied from September 1996throughout August 1997 in Santiago, Chile. Total concentrationsfluctuated between 308 and 10,334 spores/m3/day withan annual mean of 2,154 per m3, the highest dispersion beingduring April and May. Forty-five percent of total fungal content wasfound in autumn. Thirteen genera and 3 other spore types wereidentified. Cladosporium, the most abundant genera in ouratmosphere, contributed with 70.9% of the total fungi counts andreached an annual mean of 1,527 spores/m3/day, itshighest frequency being in autumn. Alternaria appeared as thesecond most frequent genera, with an annual mean of 40spores/m3/day, representing a 1.9% of theannual fungal catch. Altogether, Stemphylium, Torula, Epicoccum,Ganoderma, Helminthosporium, Chaetomiun, Pleospora and othersreached relative frequencies of 0.5% or less. It is concludedthat fungi are present in Santiago's atmosphere all year round, some ofthem with a clear seasonality.  相似文献   

3.
The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a “dry season” and a “rainy season”. A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/Penicillium."  相似文献   

4.

Since Alternaria is an important aeroallergen in temperate areas of the world, this study was undertaken in order to provide the first results obtained about the seasonal regimen of Alternaria airborne spores in the atmosphere of Santiago de Chile (Chile), for a period of 10 years (2005–2015), which has led to the construction of the first calendar for the city. Furthermore, the periods of maximum presence of these particles in the air were determined together with those days in which the threshold levels set up for the development of clinical symptoms were reached and/or surpassed. The annual spore integral varied between 4077 spores/m3 registered in 2013–2014 and 6824 spores/m3 in 2010–2011, with a main spore season from mid-winter (mid-July/mid-August) to the end of the autumn (June). Daily peaks were mainly detected in spring or autumn seasons but even in winter, although without surpassing 65 spores/m3 in any case.

  相似文献   

5.
A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter,Pinus andQuercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores (Penicillium, Aspergillus andCladosporium) as well as Dictyospores (Alternaria) were the most abundant;Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.  相似文献   

6.
Multi-year study of Ganoderma aerobiology   总被引:1,自引:1,他引:0  
Ganoderma basidiospores are dominant members ofthe airspora in many regions of the world and areconsidered important airborne allergens. Theaerobiology of Ganoderma spores in the Tulsa,Oklahoma area was examined using Burkard VolumetricSpore Traps from 1987–1996. Ganodermaspores were present in the atmosphere on more than95% of the days from June through October with peakconcentrations generally occurring from late August tomid-October. The data showed marked interannualvariation, with seasonal totals in 1994 and 1995significantly higher than other years. Stepwisebackward multiple regression showed that cumulativeseason total was significantly related to Junetemperature and May through August precipitation(R2 = 0.97, p < 0.01).  相似文献   

7.
Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004–2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.  相似文献   

8.
The aim of this paper was to make a first approximation of the fungal spore airborne content in Valladolid along the year, constructing the first spore calendar for the middle-west of Spain. So that, we monitored the city during 2005 and 2006, being Cladosporium the most abundant type, present all over the year (together with Pleospora). The greatest atmospheric spore diversity was observed in April in contrast with February. The intra-diurnal pattern for Alternaria, Cladosporium and Dreschlera was very similar with an hourly concentration percentage decreasing along two periods, whereas Coprinus, Ganoderma and Periconia showed a clearly nocturnal pattern. The meteorological parameter that most influenced airborne spore concentrations was temperature, significantly and positively in the case of dry-air spores but negatively for wet-air spores.  相似文献   

9.
This paper is the first aero-mycological report from Demänovská Ice Cave. Fungal spores were sampled from the internal and external air of the cave in June, 2014, using the impact method with a microbiological air sampler. Airborne fungi cultured on PDA medium were identified using a combination of classical phenotypic and molecular methods. Altogether, the presence of 18 different fungal spores, belonging to 3 phyla, 9 orders and 14 genera, was detected in the air of the cave. All of them were isolated from the indoor samples, and only 9 were obtained from the outdoor samples. Overall, airborne fungal spores belonging to the genus Cladosporium dominated in this study. However, the spores of Trametes hirsuta were most commonly found in the indoor air samples of the cave and the spores of C. herbarum in the outdoor air samples. On the other hand, the spores of Alternaria abundans, Arthrinium kogelbergense, Cryptococcus curvatus, Discosia sp., Fomes fomentarius, Microdochium seminicola and T. hirsuta were discovered for the first time in the air of natural and artificial underground sites. The external air of the cave contains more culturable airborne fungal spores (755 colony-forming units (CFU) per 1 m3 of air) than the internal air (from 47 to 273 CFU in 1 m3), and these levels of airborne spore concentration do not pose a threat to the health of tourists. Probably, the specific microclimate in the cave, including the constant presence of ice caps and low temperature, as well as the location and surrounding environment, contributes to the unique species composition of aeromycota and their spores in the cave. Thus, aero-mycological monitoring of underground sites seems to be very important for their ecosystems, and it may help reduce the risk of fungal infections in humans and other mammals that may arise in particular due to climate change.  相似文献   

10.
The concentration of fungal spores in the atmosphere of Madrid was recorded and analyzed for the year 2003. Airborne spores were sampled continuously with a Hirst-type spore trap located on the roof of a building of the School of Pharmacy, at about 8 m above ground level. Correlation between the mean daily spore concentrations and meteorological variables were explored by means of Spearman’s correlation analyses. Seventy spore types were identified, of which the most numerous were Cladosporium, Aspergillaceae (conidia), Coprinus, Agaricales (basidiospores), Ustilago (teliospores) and Pleospora (ascospores). These six types of spores represented more than 70% of the total. Cladosporium represented 41% of the total fungal spores, while Ustilago spores, the concentrations of which in May and June exceeded 47% of the monthly total spore count, constituted the second most important group. Spores reached their highest concentrations in the spring months, and in the autumn, mainly in October. A␣positive significant correlation was found between airborne spore counts and temperature and relative humidity. The results provide a picture of the spectrum of airborne fungal spores present in the atmosphere of Madrid and of the `peak' periods of their presence. Future studies will provide more detailed information on the seasonal dynamics of the spores most frequently found in the air as well as on the extent to which atmospheric conditions influence their release, dispersion and sedimentation processes.  相似文献   

11.
Present investigation was undertaken to study the dynamics of relationships between atmospheric fungal spores and meteorological factors in western Romania. The airborne spore sampling was carried out by employing volumetric sampling. A total of nine meteorological parameters were selected for this investigation. During 2008–2010, it was found the same pattern of behaviour in the atmosphere for selected spore types (Alternaria, Cladosporium, Pithomyces, Epicoccum and Torula). The spores occurred in the air throughout the whole year, but maximum concentrations were reached in summer. Cladosporium and Alternaria peak levels were observed in June. Epicoccum peak value was found in September. The relationships between airborne spore concentrations and environmental factors were assessed using the analysis of Spearman’s rank correlations and multiple linear regressions. Spearman’s rank correlation analysis revealed that maximum, minimum and mean temperature, and number of sunshine hours were strongly (p < 0.01) and directly proportional to the concentration of all analysed fungal spores. Negative and significant correlations were with daily mean relative humidity. The variance explained percentage by regression analyses varied between 30.6 and 39.6 % for Alternaria and Cladosporium airborne spores. Statistical methods used in this study are complementary and confirmed stable dependence of Alternaria and Cladosporium spore concentrations on meteorological factors. The climate change parameters either increased temperatures, changed precipitation regimes or a combination of both affected allergenic fungal spore concentrations in western Romania. This study demonstrates the need for investigations throughout the year, from month to month, regarding the correct interpretation of airborne spore relationships with meteorological parameters.  相似文献   

12.
Airborne fungi were studied in the city of Athens using two complementary methods in which 136 concurrent samplings were carried out during the 12-month period from January until December 1998. A portable Burkard air sampler for agar plates was used for trapping the culturable portion of the mycobiota. Nineteen genera of fungi were identified and assessed in terms of total numbers and fluctuations in concentration (Alternaria, Arthrinium, Aspergillus, Aureobasidium, Botrytis, Chrysonilia, Cladosporium, Drechslera, Epicoccum, Fusarium, Mucor, Nigrospora, Paecilomyces, Penicillium, Rhizopus, Sclerotinia, Scopulariopsis, Trichoderma and Ulocladium), with the exception of those included in the Sphaeropsidales, the yeasts, and the non-sporulating fungi, which were counted as groups. A volumetric Burkard air sampler for glass slides was operating simultaneously for detecting the total mycobiota, including the non-culturable and the non-viable portion. Ascospores, basidiospores, spores of Myxomycetes, Ustilaginales, Uredinales and Erysiphales, teliospores of Puccinia, as well as conidia of the genera Curvularia, Helminthosporium, Periconia, Pestalotiopsis, Pithomyces, Polythrincium, Stachybotrys, Stemphylium and Torula were also recorded. Only seven of the genera were recovered by both samplers. The total numbers of fungal spores, which had a maximum concentration of 3,175 spores/m3, as well as the spore concentrations of the genera Cladosporium (2,565 spores/m3) and Alternaria (280 spores/m3) were underestimated by the viable method (2,435 CFU/m3 for the total, 2,169 CFU/m3 for Cladosporium and 180 CFU/m3 for Alternaria). The non-viable method fails to resolve the identification of the genera Penicillium and Aspergillus, which are major components of the airborne mycobiota (1,068 CFU/m3 and 204 CFU/m3, respectively) based on recovery by the viable method.  相似文献   

13.
A calendar of fungal spore seasons for Melbourne during 1993was established using a 7-day volumetric Burkard trap. Twenty-ninegenera and five spore groups were identified. The dominant spore typesdetected were Cladosporium (41.7%),Leptosphaeria (14.9%), Coprinus (14.6%),`Ascospore 1' (5.5%), Ganoderma (2.1%) andAlternaria (1.4%). Seasonally, spore levels ofCladosporium and Alternaria peaked in spring andsummer, Leptosphaeria and Ganoderma peaked towardsummer and autumn, `Ascospore 1' peaked in winter, whilst spore levelsof the basidiomycete Coprinus fluctuated year round. Inconclusion, a range of allergenic fungal spores were present in the airof Melbourne throughout the year.  相似文献   

14.
Introduction Fungal spores constitute an important fraction of bioaerosols in the atmosphere. Objectives To analyse the content of Alternaria and Cladosporium spores in the atmosphere of Beja and the effect of meteorological conditions on their concentrations. Methodology The daily and hourly data of Alternaria and Cladosporium fungal spores concentration in the atmosphere of Beja were monitored from April 12, 2012 to July 30, 2014, based on the Portuguese Aerobiology Network methodology. The influence of meteorological conditions on the studied types of fungal spore concentrations was assessed through Spearman’s correlation analysis. Results During the study period, 20,741 Alternaria spores and 320,862 Cladosporium spores were counted. In 2013, there were 5,822 Alternaria spores and 123,864 Cladosporium spores. The absolute maximum concentrations of Alternaria and Cladosporium spores were recorded on November 8, 2013, with 211 and 1301 spores/m3, respectively. Temperature, insolation and wind direction parameters showed a positive correlation with Alternaria and Cladosporium spore levels, while relative humidity and precipitation presented a negative correlation, which is statistically significant. Wind speed only showed a statistically significant positive correlation in terms of Alternaria spore levels. Conclusion Alternaria and Cladosporium spores are present in the atmospheric air of Beja throughout the year, with the highest concentration period occurring during spring and autumn. There was a clear effect of meteorological parameters on airborne concentrations of these fungal spores.  相似文献   

15.
Aerobiological studies to identify Ganoderma basidiospores were conducted using Burkard Volumetric 7-Day Recording Sampler (Burkard Manufacturing Co. Ltd., England) at three separate cities in Saudi Arabia. At one site, Jizan, close to the coast of Red Sea, up to 17% of all basidiospores counted were identified as Ganoderma spp. while less than 1% Ganoderma spp. were identified at the two non-coastal sites. A clear seasonal pattern from late autumn to early summer (October-March) with a peak in December was recorded at Jizan and the maximum concentration of Ganoderma basidiospores reached 1.9×103?m?3 in December followed by 1.2×103?m?3 in January. The diurnal pattern of Ganoderma spore concentrations, when averaged over the year had late-evening maxima (a nocturnal pattern). However, other sites that showed low concentrations of Ganoderma basidiospores did not exhibit any peak or a high maximal level. The study demonstrates that even in a desert environment, airborne activities of Ganoderma basidiospores can be recorded. The impact of Ganoderma on asthmatic patients, particularly in such environments, needs to be investigated.  相似文献   

16.
The concentration and distribution characteristics of airborne fungi were investigated in indoor and outdoor air of two metro stations (Imam Khomeini and Sadeghiyeh stations) in Tehran subway. Samples were taken from indoor air at each station from platform and ticket office area also from adjacent outdoor air of each station. Indoor sampling was conducted for two types of trains, old and new. The concentration of airborne fungi ranged from 21 CFU/m3 at the outdoor air of Imam Khomeini station to 1,402 CFU/m3 in the air samples collected from the platform of this station. Results showed that airborne fungi concentrations at indoor air were higher than the outdoor air (p < 0.05), and fungal levels significantly correlated with the number of passengers (p < 0.05; r = 0.68) and RH % (p < 0.05; r = 0.43). Sixteen genera of fungi were isolated in all sampled environments. The predominant genera identified in indoor and outdoor air were Penicillium spp. (34.88 % of total airborne fungi) and Alternaria spp. (29.33 % of total airborne fungi), respectively. The results of this study showed that the indoor air quality in subway is worse than the outdoor air.  相似文献   

17.
Airborne pollen and spores, as well as airflow directions, were continuously monitored during a cruise across the East Mediterranean from Tel Aviv, Israel, to Istanbul, Turkey. In spite of the fact that a high-altitude dust cloud moved, at that, time from North Africa, across the East Mediterranean, only a few dust particles were monitored on the boat. The numbers of counted airborne pollen along the cruise path were rather small. This is, in part, because the trip was taken after the main flowering season in the East Mediterranean region. Nevertheless, airborne pollen grains were still found, either as a result of remnant pollen releases by late-flowering plants or because of secondary lift-up of previously settled pollen. The presented pollen counts are average pollen counts /m3 air /6 h. The counts ranged between ∼5 pollen/m3 of air in mid-sea (July 16th–July 17th) or ∼6 pollen/m3 of air on the Israeli coast (July 16–July 17th), and 30 pollen/m3 of air near the coasts of Turkey and of the Greek Islands (July 18th–July 19th) and some 18 taxa of pollen were identified, most of them at the family level. Some 30 taxa of different spores were recorded. The numbers of airborne spores were relatively low in mid-sea (300–750 spores/m3 air), but were high near the coasts of Turkey (1,200–2,400 spores/m3 air) and of Israel (340–1,695 spores/m3 air).  相似文献   

18.
Seasonal and diurnal changes in concentrations of airborne basidiomycete spores (basidiospores, rusts, smuts) were studied, using Burkard volumetric spore traps, in two areas of Mexico City with different degrees of urbanization and related to changes in climatic variables through 1991. Basidiomycete spores formed a large component of the total airborne fungal spore load in the atmosphere of Mexico City. They were the second most abundant spore type after Deuteromycotina (Hyphomycetes), forming 32% of the total fungal spores trapped in an urban-residential area and 28% in an urban-commercial area. The most abundant basidiomycete spores were basidiospores although smut-type spores were trapped on more days than basidiospores and rusts on fewer. Basidiospores occurred in concentrations up to 2,000 spores m-3 in the urban-residential area. Basidiospores showed a marked seasonal distribution, especially in the southern area, with their greatest abundance during the wet season. The correlation coefficients associated with regressions between basidiospore concentration and some environmental factors were increased when a lag period of 2 to 4 days was used between environmental measurements and the day of spore collection. Basidiospore concentrations exceeded the 75 percentile concentration (>400 spores m-3) most often when rainfall was up to 6 mm and relative humidity was >70%. Basidiospores showed a diurnal periodicity with greatest concentrations in the early morning. The most common basidiospore type was Coprinus which formed 67% of basidiospores trapped in the southern area and 63% in the central area. Smut spores were trapped on 87% of days through the year while rust spores occurred in only 35%. Both rusts and smuts were present in only small concentrations.  相似文献   

19.
This study determined annual and monthly fluctuations in concentration of 20 fungal genera. The selection of taxa was made based upon their high frequency in the air as well as their well-known allergenic properties. Air samples were collected using a spore trap of Hirst design at an urban site where the trap continuously worked throughout a 5-year survey. Weather data were acquired from a meteorological station co-located with the air sampler. Influence of several meteorological parameters was then examined to reveal species–environment interactions and the potential location of fungal spore sources within the urban area. The maximum monthly sum of mean daily spore concentration varied between genera, and the earliest peaks were recorded for Pleospora sp. in April and Ustilago sp. in June. However, the majority of investigated spore types occurred in the greatest concentrations between August and September. Out of the 20 studied taxa, the most dominant genus was Cladosporium sp., which exceeded an allergenic threshold of 3000 s m?3 40 times during very rainy years and twice as much during dry years. A Spearman’s rank test showed that statistically significant (p ≤ 0.05) relationships between spore concentration and weather parameters were mainly r s  ≤ 0.50. Potential sources of spores at Worcester were likely to be localised outside the city area.  相似文献   

20.
Fungal spores of Alternaria and Cladosporium are ubiquitous components of both indoor and outdoor air samples and are the main causes of human respiratory allergies. Monitoring these airborne fungal spores during 2009–2014 was carried out by means of Hirst-type spore trap to investigate their airborne spore concentrations with respect to annual load, seasonality and overall intradiurnal pattern. Alternaria and Cladosporium spores are present throughout the year in the atmosphere of Tétouan, although they show seasonal variations. Despite important differences between years, their highest levels presented a first peak during spring and a higher second peak in summer or autumn depending on the year. The spore concentrations were homogeneously distributed throughout the day with slight increase of 7.6 and 3.7% on average between 12–14 and 14–16 h for Alternaria and Cladosporium, respectively. The borderline of 3000 sp/m3 of Cladosporium linked to the occurrence of allergic diseases was exceeded between 13 and 31 days. Airborne spores of Alternaria overcame the threshold value of 100 sp/m3 up to 95 days, suggesting that Cladosporium and Alternaria could be clinically significant aeroallergens for atopic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号